Mathematics
高中
已解決

矢印のところなのですが、1が動いてるのはわかるんですが、どのようにして動いてるのかいまいちわかりません。過程を教えてほしいです。

奇数で 2{12 (n-1)n+1}-1=m-n+1 これはn=1のときも成り立つ。 (2)(1)より、第n 群は初項n-n+1, 公差 2 項数nの等 差数列をなす。 よって, その総和は n{2-(n²-n+1)+(n−1)•2}=n³ 1から始まる奇数の番 目の奇数は2k-1 <12-1+1=1 n(2a+ (n-1)d} (3) 301が第n群に含まれるとすると n-n+1≦301<(n+1)-(n+1)+1 n(n−1)≤300<(n+1)n...... D +12 求める。右足は n+1)- よって (n+1) 群の最初の数。 (n-1) は単調に増加し, 17・16=272, 18・17=306であn(n-1)が 「単調に増 るから、①を満たす自然数nは n=17 301が第17群のm番目であるとすると (172-17+1)+(m-1)-2-301 これを解いて m-15 する」とは,nの値が きくなるとn (n-1) 値も大きくなるとい と。 4a+(m-1)d したがって, 301 は第17群の15番目に並ぶ数である。 別館 (前半) 2k-1301から k=151 よって, 301 はもとの数列において, 151番目の奇数であ る。301 が第群に含まれるとすると 1/21n(n-1)<151/12n(n+1) ゆえに n(n-1)<302≦n(n+1) これを満たす自然数 n は、上の解答と同様にして n=17 基本例題 29 の結果を利用しての公式を導く <第1群から第k群 にある奇数の個数 1 -k(k+1) 29 において、第群までのすべての奇数の和は、解答 (2)の結果を利用す 1+2+3++ガ=2 1 MAA 一方、第群の最後の奇数を第(n+1) 群の最初の項を利用して求めると

解答

✨ 最佳解答 ✨

動く(移項)と考えるのもいいですが、
移項はそもそも両辺(各辺)に
同じことをするところから来ています

この場合は、各辺から1を引いています
n²-n+1 ≦ 301 < (n+1)²-(n+1)+1
n²-n ≦ 300 < (n+1)²-(n+1)
n(n-1) ≦ 300 < (n+1)n

絶対合格

ありがとうございます!

留言
您的問題解決了嗎?