Mathematics
高中
已解決

複素数平面です
(2)がわかりません
範囲の両端を合わせないといけないということですか?また、どうして合わせるのですか、

3章 13 複素数の極形式と乗法、除法 要例 96 複素数の極形式 (2) 偏角の範囲を考える ①①①①① の複素数を極形式で表せ。 ただし, 偏角0 は 0≦0 <2z とする。 -cosa+isina (0<a<л) (2) sina+icosa (0≤a<2) 基本 95 既に極形式で表されているように見えるが, (cos+isin) の形ではないから極形 式ではない。 式の形に応じて 三角関数の公式を利用し, 極形式の形にする。 - (1) 部の符号 - を + にする必要があるから, COS (π-0)=-cos0 を利用。 更に 虚部の偏角を実部の偏角に合わせるために, sin(π-0)=sin0 を利用する。 (2) 実部の sin を cos に, 虚部の COS を sin にする必要があるから -0=sin0, COS 2 (一)= sin(0)= =cose を利用する。 2 また,本間では偏角 0 の範囲に指定があり, 0≦0 <2m を満たさなければならないこと に注意。 特に(2)では, αの値によって場合分けが必要となる。 CHART 極形式 (cos+isin (1) 絶対値は 解答 また の形 三角関数の公式を利用 (-cosa)+(sinα)2=1 -cosa+isina=cos(π-a)+isin (π-α) ...... ① <a<πより,0<x-α <πであるから,①は求める極 形式である。 (2) 絶対値は また ここで √(sina)²+(cosa)²=1 sina+icos a=cos(-a)+isin(-a) ≦a≦のとき, 2 る極形式は 2 であるから cos(π-0)=-cost sin(π-0)=sin0 515 偏角の条件を満たすかど うか確認する。 cos(2-0)-sine sin(-)-cos o -αであるから、求め <2から -- π 3 って sina+icosa=cos (7/7-a)+isin (7/7-α) π ゆえに, αの値の範囲に 2 よって場合分け π π <<2のとき<<0 <α <2のとき, 偏 2 2 角が0以上 2 未満の範 各辺に2を加えると、 各辺に 2πを加えると, 12 on-a<2πであり CO COS (-a)= cos(-a), 0x sin(-a)-sin(-a) -α=sin 囲に含まれていないから, 偏角に2を加えて調整 する。 なお COS (+2nπ) =COS 3302TUCCIAsin(+2nx)=sin よって、求める極形式は 5 sina+icosa=cos ineticos (317-α)+isin (27-α) で [n は整数] TP

解答

✨ 最佳解答 ✨

> 範囲の両端を合わせないといけないということですか?

いいえ、たまたま合っただけです
少なくとも、合わせにいったわけではありません
(π/2)-αのとりうる値の範囲を調べたら0〜π/2になった、
という感じです

留言
您的問題解決了嗎?