Mathematics
高中

分かるとこだけでも式を教えて欲しいです🙇‍♀️

5 9 A, B, Cの3人がじゃんけんを1回するとき,次の確率を求めよ。 (1) Aだけが勝つ確率 P. 46, 47 1 (2) 全員が違う手を出す確率 (3) 誰も勝たない, すなわちあいこになる確率 10 10本のくじがある。 そのうち当たりくじは1等が1本, 2等が3本で あり、残りははずれくじである。 このくじから同時に3本を引くとき 次の確率を求めよ。 (1) 当たりくじを少なくとも1本引く確率 (2)1等、2等、はずれくじをそれぞれ1本ずつ引く確率 → p.50~52 5 2 (3) 2等を2本以上引く確率 まで、何も得られない 11 001 数直線上を動く点Pが原点の位置にある。1個のさいころを投げて、 3の倍数の目が出たときはPを正の向きに1だけ進め,3の倍数でな い目が出たときはPを負の向きに1だけ進める。さいころを5回投げ 終わったとき,Pの座標が3である確率を求めよ。 →p.59 応用例題 11 12 当たりくじ3本を含む10本のくじを, A, B, Cの3人がこの順に1本 ずつ引く。 ただし, 引いたくじはもとにもどさない。 このとき,次の 確率を求めよ。 → p. 62, 63 (1)A, B がはずれ, C が当たる確率 (2) Cが当たる確率 2013三者択一式の問題が6問続けて出題される。どの問題でもでたらめに 答えを選ぶとき,次のものを求めよ。ただし、各問題でどの答えを選 ぶ確率も,それぞれ 1/18 と考えてよいとする。 (1)1問だけ正解する確率 (2) 正解する問題数の期待値 10
確率 すうa

解答

尚無回答

您的問題解決了嗎?