Mathematics
高中

高一数学です。(2)がわかりません。なぜ絶対値なのに二乗するんですか?

基本 例題 43 対偶を利用した命題の証明 文字はすべて実数とする。 対偶を考えて,次の命題を証明せよ。 (1)x+y=2 ならば 「x≦1 または y≦1」 (2)2 +626 ならば 「|α+6|>1 または |α-6|>3」 CHART & SOLUTION 対偶の利用 00000 p.76 基本事項 6 2章 6 命題の真偽とその対偶の真偽は一致することを利用 (1)x+y=2 を満たすx, yの組 (x, y) は無数にあるから,直接証明することは困難であ る。そこで,対偶が真であることを証明し, もとの命題も真である, と証明する。 条件 「x≦1 または y≦1」 の否定は 「x>1 かつ y>1」 (2) 対偶が真であることの証明には、次のことを利用するとよい。 解答 A≧0, B≧0 のとき A≦B ならば A'≦B2 (p.118 INFORMATION 参照。) (1) 与えられた命題の対偶は 「x>1 かつ y>1」 ならば x+y=2 これを証明する。 x> 1, y>1 から x+y>1+1 すなわち x+y>2 よって, x+y=2 であるから, 対偶は真である。 したがって,もとの命題も真である。 麺 (2) 与えられた命題の対偶は 「la +6≦1 かつ a-b≦3」 ならば2+b2<6 これを証明する。 ←pg の対偶は g⇒ b ←x>a,y>b ならば x+y>a+b (p.54 不等式の性質) 0 論理と集合 = 0 される |a+6|≦1, |a-b≦3から (a+b)≤12, (a-6)²≤32 ←|A|=A2 >1 よって (a+b)2+(a-b)2≦1+9 ゆえに 2(a²+b²)≤10 よって a²+b²≤5 ゆえに、対偶は真である。 したがって,もとの命題も真である。 ← ' + b'≦5 と 56 から a2+62<6 S POINT 条件の否定条件p, gの否定を、それぞれp, gで表す。 かつ または -PNQ=PUQ またはq かつ PUQ=PnQ PRACTICE 43° 文字はすべて実数とする。 次の命題を, 対偶を (1)x+ya ば 「xa-b または y>b」 (2)xについての方程式 ax+b=0 がただ1つ して証明せよ。 もつならば

解答

尚無回答

您的問題解決了嗎?