Mathematics
高中
数Iの問題です。左の写真が問題、右が解説です。赤のカッコで囲んであるところが、解説読んでも分かんなかったです。なぜこの解説の式になるのか知りたいです。
なぜこの式になるのか分からなくても全然いいので、自分なりの考え方がある人がいたら、参考にさせていただきたいので、回答してくださるとうれしいです!🙏
1. 次のア~シに適する数字(0~9) を答えよ。
(1) 6x2+7xy+2y2+x-2を因数分解すると
ア x+y(ウ x+2y+ エ)である。
(2) A=x+x2+x+1, B=x-x²+x-1のとき,A,Bを因数分解すると
A=(x+オ)(x2+カ), B=(x-キ)(x²+ク)である。
A-B の展開式におけるxの係数はケコである。
(3)a+b+c=11, ab+bc+ca=17のときa+b2+c2= サシである。
1 (1) 6x2+7xy +2y2 + x-2
=6x2+(7y+1)x+2y2-2
=6x2+(7y+1)x+2(y+1)(y-1)
={2x+(y-1)}{3x+2(y+1)}
=(2x+y-1)(3x+2y+2)
<16
(2) A = x + x2+x+1=x2(x+1)+(x + 1)
=(x+*1)(x2+1)
B=x3-x2+x-1=x2(x-1)+(x-1)
=(x-1)(x2+1)+(I
A3-B3=(x+1)(x2+1)(x-1)(x2+1)3
={(x+1)-(x-1)}(x2 + 1)3
={(x3+3x2+3x+1)- (x3-3x2+3x-1)}
x(x2+1)3
=(6x2+2)(x+ 3x4 + 3x 2 + 1 )
(
((1+0).
これを展開したとき, xの項は
6x2.3x4 +2.x=20x6
(+))=
よって, xの係数は20
(3) (a+b+c)2=a2+62+c2 + 2ab + 2bc+2ca
よって
a2+b2+c2
=(a+b+c)2-2(ab + bc+ca)
=112-2.17=サシ87
(ア)
3
(イ)1(ウ)
(エ) 2
(オ)
1
(カ) 1
(キ) 1 (2) 1
(ケ)
(5) 2
(コ)
(1) 0 A
(サ) 8
(シ) 7
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6081
25
詳説【数学A】第2章 確率
5839
24
数学ⅠA公式集
5653
19
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5139
18