Mathematics
高中
已解決
この問題教えてください
a+b
a>0, b>0 のとき, 不等式10g10-
2
成り立つときを調べよ。
log104 +10g106 を証明せよ。また,等号が
2
解答
解答
That is a Strictly Increasing Function and a special case of Jensen's inequality for convex functions. The logarithm function is concave, and Jensen's inequality tells us that for a concave function, the function's value at the average point is greater than or equal to the average of the function's values.
On the contrary, if we consider the situation with a convex function, the value of the function at the average point will be less than or equal to the average of the function’s values.
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8918
116
数学ⅠA公式集
5638
19
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4549
11
詳説【数学A】第3章 平面図形
3607
16