Mathematics
高中

マーカーのところをどうやってやったのか途中式を教えていただきたいです。

例題 32.5 確率変数の平均・ 標準偏差平 **** 袋の中にn個(n≧3) の玉が入っている。 そのうちの2個は白玉で,残 りは黒玉である.この袋から1個ずつ玉を取り出していく。ただし、取り 出した玉は袋の中に戻さない. 白玉がはじめて出るまでに取り出される黒 玉の個数Xの平均と標準偏差を求めよ。 [考え方 たとえば, X=3 となるのは、3回目まで黒玉が取り出され, 4回目にはじめて白玉が 取り出されるときで,その確率は,P(X=3)=n-2.n-3.n-4. 2 解答 n n-1 n-2 n-3 である. 最初に袋の中に入っている黒玉の数はn-2 (個) であるから, 確率変数Xのと り得る値は, 0, 1,2,3, n-2である. また,Xが0となる確率は,P(X=0)=である 2 3-(k-1)-2- n 1≦k≦n-2 のとき, る。Xが P(X=k)=n-2.n-3 n-4 n-k-1 2 _n-k-1 2 nn-1n-2 よって、黒玉の個数Xの平均は、 2 n-2 n k=1 ( n 2 n(n- -1) となる。 2 al * n 赤の2(m-1-2月33) n-2 3 Z- また, n + J=0.01 E(X)=0-+2k. n-k-1 2 n-2 n-2 (n-1)Σk-k² k=1 (n-1) (n-1) 1/2(n-2)(n-1) -1 (n-2)(n-1)(2-3)} 2 n-2 n-k-1 E(X2)=02-+ n k=1 2 n-2 Σk²(n-k-1) n(n-1)=1 "-2 n-1 2(n-k-1) k(n-k-1)-1) n-1 家めよ k=1 を5回繰り返し、 k=n(n+1) Σk²= n(n+1)(2n+1) k=1 り出すとき、 (Z)を求めよ。 E+ X-X (S) n-k+1n-kn 2 -2 n-1 n(n-1) xn(n-1)1 21 {(n−1) Σk k=1 k=1 + n(n-1){(n-1)-(n-2)(n-1)(2n-3)-(n-2) (n-1)(n-2) (2n-3_n-2) 1)(n-2)(2m-38-2)=(-1)("-2)を求めよ。 よって,分散は, V(X)=E(X°)-{E(X)}よ (n- (n-2)(n-1)} 3 の (n-1)(n-2) 6(n-2)²= (n-2) (n+1) 18 したがって、標準偏差は, (X)=V(X)= V /2(n-2)(n+1) 6 練習 赤い本が2冊、青い本がn冊ある。このn+2 (冊)の本を無作為に1冊ずつ選び、 B2.5 本棚に左から並べていく。 2冊の赤い本の間にある青い本の冊数を X とすると *** Xの平均と分散を求めよ. 第2 F B B C C
確率変数と確率分布 分散・標準偏差

解答

尚無回答

您的問題解決了嗎?