Mathematics
高中
已解決

(イ)でx^2をかけて解かないのは、
解くのが難しいからですか?解けないからですか?
青い付箋の下に途中まで書いてみました!

03/15~ イ 22次不等式/不等式を解く一 (ア) 連立不等式22-3<0,3x²+2x-8>0を解け. x+6 (不等式 ->x+2を解け. I ○)についての不等式+3+3を解け. ( 摂南大法) (龍谷大理工) 2次不等式はグラフを補助に ax2+bx+c>0(a>0) を考えてみよう.y=ax2+bx+cのグラフとェ軸 との共有点の座標がα, B (α<B) であれば右のようになり, >0 となる範囲は, x<α またはβ<エ 2次不等式を解くとき, グラフを補助にすると分かりやすい. y=ax2+bx+c (大阪歯大) である.α,βはy=0の解、 つまり ax2+bx+c=0の2解である. まとめると 上の場合, ax2+bx+c=a(x-α) (x-β)と因数分解 される.a>0のとき, ax²+bx+c>O(エーα)(B)>0 で,この解は,「x<a, B<x」 (α, βの外側)となる. y>0\ 一方, y<0, つまり(x-α)(x-B) <0の解は,「a<x<B」 (α,Bの間)となる. 分数不等式 分母をはらえばよいが, 分母の符号で場合分けが必要である. /y>0 α B y < 0 絶対値がらみ (1) x+07/1917) Fre de グラフを描いて考えるのがよいだろう。(p.20) 解答 (ウ) IAI CB B <A <B x20 or xco でちびる (ア) [ 2x2-x-3<0 (x+1)=x^2(2)<x< [(x+1)(2x-3)<0 3x²+2x-8>0 (x+2)(3x-4)>0 解 .. -1<x<2/23 かつ「<-2または 1/43 <エ」 .. 4 3 2 ある : (x+3)(x-2)<0 x>0とから, 0<x<2 二側 (イ) 1°ェ>0のとき,両辺にを掛けて, x+6>x(x+2) :. x²+1-60 .. -3<x<2 -2 -1 ←このような問題では 43 I x² 問ではz≠0) を前提 で で 2°x<0 のとき, 両辺にェを掛けると1° と不等号の向きが逆になり, (3)(x-2)>0 :. x<-3または2<x x<0とから, x<-3 1,2°より, 答えは,x<-3 または 0<x<2 (ウ) まず,y=x+35とy=|z+3|の交点の座標を求める。 1°-3のとき, x2+3ェ-5=x+3 '+2x-8=0 ∴ (x+4)(x-2)=0 -3を満たす解を求めて, x=2 2°-3のとき,x2+3ェ-5=-(+3) :.x2+4x-2=0 3を満たす解を求めて, x=-2-√6 よって、右図のようになるから, 求める範囲は 2-6 または2≦x y=x2+3x-5 y y=|x+3| (1)x(x+6)>x2(x+2) x+6x0x03-29 -X3-x+6x20 6 10 ②グアクキース-1+1/2 -3 0 2 x -2-√6 x2+3-5=|x+3|を解く. 1の (ア)で使った方法よりも. 絶対値の中身の符号で場合分け した方がよい. y=x2+3x-5がy=|x+3の上 側にある範囲を求めればよい、 2 演習題(解答は p.54) (ア) 連立不等式2-4x+2>0, x'+2x-8<0 を解け. 8 (大阪経済大 ) (イ)キーのとき,不等式 (ウ) 不等式|ー2x-5| <ェ+1を解くと, <x-1の解は [ である. x+6 ( 東京都市大) である. (宮崎産業経営大) (ウ) グラフを活用. 35

解答

✨ 最佳解答 ✨

三次関数のグラフが描ければ解くこともいけます。今回は数値が優しいのでこっちの方が早く解けますね。
(補足)その参考書の説明が分かりにくい(場合分けの時に1°とか分かりにくい記号を使ってるし、「x>0とから」ではなく、「またx>0より」とか「またx>0なので」の方が分かりやすい)
ので変えること強くすすめます。

留言
您的問題解決了嗎?