Mathematics
高中
已解決
二次不等式の質問です。
(1)はなぜ最後の答えがa <0、8<aではなく0<a <8なのですか?
また、(2)はなぜ最後の答えが−3/1<=k <=1ではなくk <=−3/1になるのですか?
質問が長くなってしまいごめんなさい🙇♀️🙇♀️
ここ
D<0 から, 求めるαの
(2) kx2+(k+1)x+k≦0
① とする。
[1] k=0 のとき, ① は
x≤0
類で、
これはすべての実数xに対しては成り立たない。
つ
[2]k0 のとき 2次方程式 kx2+(k+1)x+k=0
の判
だけ
①
別式をDとすると,すべての実数xに対して①が成
り立つための条件は
考
k<0 かつ D≦0
0
(2)[2]
<
ここで
D=(k+1)2-4・k k=-3k2 +2k+1
軸と
=-(3k+1)(k-1)
S
D≦0 から
(3k+1)(k-1)≧0
いまた
る条件と
[2]
よって k≤ -11, 1≤k
<0との共通範囲をとると
k≤-
以上から、 求めるkの値の範囲は
k
VII
1-3
113
解答
(1)x2-ax+2a=0 の判別式をDとする。
の係数は正であるから, 常に不等式が成り立つ条件は
ここで
D<0
D=(-a)2-4・1・2a=a-8a=a(a-8)
D<0 から, 求めるαの値の範囲は
0 <a <8
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8926
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6079
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6075
51
詳説【数学A】第2章 確率
5839
24
グラフまで丁寧に書いてくれたおかげで理解できました!ありがとうございます🙏