Mathematics
高中
已解決
x+2<x+(x+1)
上記の比較はなぜ必要なんですか?
x>0ではダメな理由が知りたいです。
基礎問
84 三角形の成立条件
3辺の長さが x, x+1, x+2である三角形について
(1) πのとりうる値の範囲を求めよ.
(2)この三角形が鈍角三角形になるようなxのとりうる値の範囲
を求めよ.
解答
(1) 各辺は正だから, x>0...... ①
このときは,x<x+1 <x+2 だから, 最大辺はx+2
141
よって, x+2<x+(x+1)
<x+1 <x+(x+2) と
∴.x>1
: x>......②真の長さ 面 <(x+1)+(x+2)
静面 ○
①.②より, x>1
は調べる必要はない
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6080
25
数学ⅠA公式集
5652
19
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5138
18
詳説【数学Ⅰ】第三章 図形と計量(前半)~鋭角鈍角の三角比~
4550
11
これが成立しないと三角形にならないんですね
ありがとうございました!