Mathematics
高中
已解決
2(2)の問題ですが最小値がないのは、定義域が0≦x≦2でないからですか?
②次の関数に最大値、最小値があれば,それらをとるの
値と最大値,最小値を求めよ。 【1問 25点】
(1)y=x^2-4.x(-1≦x≦2)
y=-3x²+4x+1 (0<x<2)
!(第6巻)
答えは次のページ
小
秒
分
点
点
点
7
(2)与式を変形するとy=-3.x-
+
3
3
となるので,そのグラフは図の実線部分
である。
答
IC
のとき最大値
7
3
最小値なし
1
y=-3x2+4x+1
73
12-3
2
→x
解答
您的問題解決了嗎?
看了這個問題的人
也有瀏覽這些問題喔😉
推薦筆記
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8928
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6080
25
詳説【数学A】第1章 個数の処理(集合・場合の数・順列組合)
6078
51
詳説【数学A】第2章 確率
5840
24
補足までしてくださりありがとうございます🙇