Mathematics
高中

105.2
記述これでも大丈夫ですか??

求めよ。 の数の差が たよ。 148 基本事項 [2] れる。 3桁が8の なす ) +b を示す。 36 n ると 22 である なる。 基本例題105 素因数分解に関する問題 解答 n 6 7 が有理数となるような最小の自然数nを求めよ。 40 n² n³ 1961 441 いずれの問題も素因数分解が,問題解決のカギを握る。 (1) √A" (mは偶数)の形になれば, 根号をはずすことができるから, √の中の数を素因数分解しておくと、考えやすくなる。 n (2) = (mは自然数)とおいて, n² n³ 196' 441 を考える。 63n 40 V 32.7m 3 7n 2³.5 2 V 2.5 これが有理数となるような最小の自然数nはn=2・5・7=70 [ 105 = = (m は自然数) とおくと n=2.3m 6 n222.32m² ゆえに がすべて自然数となるような最小の自然数nを求めよ。 P.468 基本事項 3-m²-(37)² 196 22.72 72 これが自然数となるのはが7の倍数のときであるから, m=7k(kは自然数) とおくと n=2.3.7k..... 2³-33-7³k³23.3.7k³ よって (1) (2) n³ 441 3².7² これが自然数となるもので最小のものは,k=1のときである から ① に k=1 を代入して n=42 = 検討 素因数分解の一意性 |素因数分解については,次の 素因数分解の一意性も重要である。 が自然数となる条件 77 解答 3"15"=3"(3.5)"=3m+n.5", 405=34.5 であるから 3+".5"=34.5 よってm=3, n=1 指数部分を比較して m+n=4,n=1 n 45 n を求めよ。 <63=32・7,40=23-5 3 7 2 √2-5 合成数の素因数分解は,積の順序の違いを除けばただ1通りである。 したがって、整数の問題では、2通りに素因数分解できれば、指数部分の比較によって方程式を 解き進めることができる。 問題3"15"= 405 を満たす整数 m, n の値を求めよ。 素因数分解 3) 63 3)21 7 63=3²-7 = X2-5-7 12/27-22 (有理数) ・7: となる。 TAHO ①より, kが最小のとき, nも最小となる。 500 が有理数となるような最小の自然数n V77m /54000nが自然数になるような最小の自然数n を求めよ。 n³ がすべて自然数となるような最小の自然数nを求めよ。 Op.484 EX 74.75 471 4章 17 約数と倍数 最大公約数と最小公倍数 3 る 15 1!'C 1 m っ 倍で 数 ① る n進
f _.=) n 70 50 J. 6=2-3 + 196 = 2²²² 7²2² = 14² 441=3.7=21 よく言い換えると _n 14 最けの自然数 が全く自然数となるときの na 6 1₂ 14 21 2² $12 となる必要がある。 23²1n=2·3·7=42 2₁3 つまり したが、2n=424 63 7441 42 22 72441 V 63 9
PromotionBanner

解答

尚無回答

您的問題解決了嗎?