Mathematics
高中

58.2
記述ってこれでも問題ないですよね??

388 00000 基本例題 58 条件付き確率の計算 (2) … 場合の数利用 〔類 センター試験] 3個のさいころを同時に投げ, 出た目の最大値を X, 最小値をYとし,その差 X-Y を Z とする。 (1) Z=4 となる確率を求めよ。 (2) Z=4 という条件のもとで, X=5となる条件付き確率を求めよ。 A13EUS SEDI p.385 基本事項① ) 指針▷ (1) 1≦X≦6, 1≦Y≦6 から, Z=4 となるのは, (x,y)=(5,1),(6,2)のときである。 この2つの場合に分けて, Z =4 となる目の出方を数え上げる。 (2) Z=4 となる事象をA,X=5となる事象をBとすると, 求める確率は条件付き確率 PA(B) である。 (1) でn(A), n(A∩B) を求めているから PA (B)= を利用して計算するとよい。 この場合の数は ACASSUNG 解答 BOA (1) Z=4 となるのは, (X,Y) = (5,1), (62) のときである。 Z = X-Y=4から [1] (X,Y)=(51) のとき X=Y+4 このような3個のさいころの目の組を、目の大きい方から 順にあげると,次のようになる。 (5,5,1),(5, 4,1),(5,3,1), (5, 2,1), (5,1,1) n(ANB) n(A) 3! 2! POINT ←全体をAとしたときの A∩Bの割合 [(8/8)=(8) 3! +3×3! + =24 2! [2] (x,y)=(62) のとき [1] と同様にして, 目の組を調べると (6, 6, 2), (6, 5, 2), (6, 4, 2), (6, 3, 2), (6, 2, 2) この場合の数は 3! 2! 3! +3×3! + =24 2! 条件付き確率はPA (B) = ank 以上から, Z=4 となる場合の数は 48_2 よって, 求める確率は 63 9 (2) Z=4 となる事象をA, X=5となる事象をBとすると, 求める確率は PA (B)= n(ANB) 24 1 n(A) 48 2 24+24=48 (通り) P(A∩B) P(A) d X≦6 であるためには = 1 または Y=2 組 (5,5, 1) と組 (5,1,1) については,同 じものを含む順列を利用。 (同じものがない1個の数 が入る場所を選ぶと考えて, 3C1 としてもよい。) 他の3組については順列を 利用。 PA(B) P(A∩B)n(A∩B) P(A) ħP₁(B)= n(A^B) 練習 958 の積を5で割った余りをYとするとき、次の確率を求めよ。 (1) X = 2 である条件のもとで Y=2である確率 IZ -?である条件のもとでX=2である確率 n(A) $3G3MS n(A) で計算 2個のさいころを同時に1回投げる。 出る目の和を5で割った余りを X, 出る目 (m 395 EX43」
t F 2) A = 2 = 4 x ² + 2=4となる I F B = 10 X=5となる」とすると、 PA(B) = PLA) P(ANB) 2X I ff 2 SEX Flja z ff 15 >> 20

解答

尚無回答

您的問題解決了嗎?