Mathematics
มัธยมปลาย

(ii)と(iii)の途中式がよくわかりません。
教えてほしいです🙇🏻‍♀️

練習問題 5 関数のクラフ 2次関数 y=x2-6x+10 のグラフを次のように移動させてできるグラ フの方程式を求めよ. (i) x軸に関して対称移動 (ii) y 軸に関して対称移動 (Ⅲ) 原点に関して対称移動 精講 対称移動についても平行移動と同様、頂点に注目するのがポイント です.ただし,対称移動の場合はグラフの上下が反転する場合があ ります.上下が反転するときはの係数の符号が反転することになります。 解答 平方完成すると y=(x-3)2+1 (軸対称 元の なので,頂点の座標は (31) である. グラフ (i) x軸に関して対称移動すると, 頂点は (3-1)に移り, グラフの上下が反転す るのでx2の係数は -1 となる. よって, 求めるグラフの方程式は、 (-3, 1) (3.1) (-3, -1) 0 (3,-1) x y=(x-3)2-1 (=-x+6.z-10) 原点対称 軸対称 (y軸に関して対称移動すると,頂点は(-3, 1) に移り,グラフの形状は 変化しないのでの係数は1となる. よって, 求めるグラフの方程式は, y=(x+3)'+1 (=x2+6x+10) (曲) 原点に関して対称移動すると,頂点は(-3,-1)に移り、グラフの上下 が反転するのでの係数は-1となる. よって、求めるグラフの方程式は、 y=-(x+3)-1 (=-x²-6x-10) コメント 移動に

คำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉