Mathematics
มัธยมปลาย
เคลียร์แล้ว

数2の積分の問題です。赤線に書いてある記述なのですが、グラフがとんがってるところは微分できないみたいな話を聞いたことがあるのですがこの場合は微分できる(微分可能?)のでしょうか。今回の場合は微分できるのか、それと微分できる場合とできない場合を教えていただきたいです。回答お願いします。

406 重要 例 260 面積の最大 最小 (3) 直線で囲まれた2つの部分の面積の和Sが最小になるような形の値を |曲線y=x2-x|と直線 y=mx が異なる3つの共有点をもつとき,この曲線と 00000 [類 山形大 ] 基本 246 24 y 指針 曲線y=x2-x| は, 曲線 y=xx のy < 0 の部分をx 軸に関して対称に折り返したもので、図のようになる。 よって, 曲線 y= | x-x|と直線y=mx が異なる3つの 共有点をもつための条件は、 直線 y=mx が原点を通る ことから 0<< (原点における接線の傾き) である。 ここで, 曲線と直線の原点以外の共有点のx座標をα, b とする。 また、図のように面積 St, S2 を定めると, 面積Sは S=S+S2 と表される。 Si は, 放物線と直線で囲まれた部分の面積であるから, S(xa)(x-3)dx=-1/2 (B-α) 2 ①の公式が利用できる。 9/16 S2は, S(mx(x+x)dx+f(mx-(x-x)}dx を計算しても求められるが、下の 図の赤または黒で塗った部分の面積の和差として考えると,①が利用できるので、 計算がらくになる。 y y + y y 曲線y=|x2-x| は, 図のようになる。 解答 y=-x2+xについて _y'=-2x+1_ よって, 原点における接線の傾きは 1 ゆえに, 曲線と直線が異なる3つの共 有点をもつための条件は 0<m< 1 異なる3つの共有点のx座標は,方程 式|x2-x|=mxの解である。 YA y=|x2-x| m=1. -20+1=1 y=mx 1m=0x mを動かしてか ら判断する。 xx0 すなわち x≦0, 1≦xのとき x-x=mxから 絶対値 場合に分ける 面積 x{x-(1+m)}=0 よって x=0, 1+m xx < 0 すなわち 0<x<1のとき -x2+x=mxから 0<x<1から x{x-(1-m)}=0 x=1-m したがって, 異なる3つの共有点のx座標は x=0, 1-m, 1+m 01であるか ら 1≦1+m (1≦x を満たす) 0<m<1から 0<1-m<1 (0<x<1 を満たす) 練習 ③260 ゆ 0 S

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

尖っているところでは微分できません
今回もy=|……|についてはもちろんできません

しかし、ここではy=|……|の話ではなく、
赤線の直前にある通り、y=-x²+xの話をしています
これはx=0で微分できます

スヌーピー

確認不足でした、ご回答ありがとうございます。

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉