Mathematics
มัธยมปลาย
เคลียร์แล้ว

(3)についてです。やっていることはわかるのですが、なぜそこから最後に「ゆえに〜」で答えになるのかが分かりませんでした。教えていただきたいです。

190 解答編 50 2012年度 文系〔1〕・理系〔1〕 座標平面上に2点A (1, 0), B(1, 0) と直線があり, Aとの距離とBとの 距離の和が1であるという。 以下の問に答えよ。 (1) Zy軸と平行でないことを示せ。 (2)が線分AB と交わるときの傾きを求めよ。 (3)が線分AB と交わらないとき,と原点との距離を求めよ。 Level C 2/m =1 21ml=√m²+1 m2+1 両辺0以上なので平方して 1 4m²=m²+1 m² = 3 1 m = ± √3 (2) (3) 直線をy=mx+nとおき, 点と直線の距離の公式を用いて, A. Bからの距離 ポイント (1) 直線をx=kとおき, A, Bからの距離の和を場合に分けて計算する。 の和を求める。 線分AB と交わる, 交わらないという条件から, 絶対値を1つにまとめ ることができる。 図形的に求めると 〔解法2] のようになる。 解法 1 ゆえに、1の傾きは (3)(2)と同様に dA+dB=- |m+n|+|-m+n| √m²+1 直線が線分AB と交わらないことから f(1)f(-1)>0 20-TO (m+n)(-m+n)>0 したがって、m+nとm+nは同符号なので |m+n|+|-m+n|=|(m+n)+(-m+n) | = 2|n | 2|n| よって d₁+dB=- √m2+1 (1) Aとの距離, Bとの距離をそれぞれda, dB とおく。 の方程式をx=k (kは実数) とすると d+dB=1より =2 (-1≤k<1) よって dA+dB= √m2+1 d+dB=1より dx+ds=|k-1|+|k-(-1)|=|k-1|+|k+1| -2k (k<-1) 2k (k≧1) いずれの場合もd + dB≧2 であるので, d+dB= 1 となることはない。 すなわち、y軸と平行でない。 (2)1の方程式を y=mx+n (m,nは実数) とおくと,mx-y+n=0より |m+n||-m+n| |m+n|+|-m+n| dд+dB= + == √m2+1 √m²+1 /m²+1 ここで, f(x) =mx+nとおくと, 直線が線分AB と交わることから (m+n)(-m+n) ≤0 f(1)f(-1)≦0 (m+n)(m-n)≧0 したがって, m+nとm-nは同符号または一方が0なので |m+n|+|-m+n|=|m+n|+|m-n|=|(m+n)+(m-n) | =2|m| 2|m| (2) A,Bからに下ろした垂線の足をそれぞれP, Q とすると,条件より AP +BQ = 1 Bを通りと平行な直線を / 直線APとの交点 をRとすれば, △ABR について AB=2, AR = AP+PR = AP +BQ= 1, ∠ARB=90° したがって ∠ABR=30° ゆえに、この傾き、すなわちの傾きは ・・・() 2|n n 1 =1 √m²+1 √m²+1 2 │n│ ゆえに,Iと原点との距離は 1 ......(答) √m²+1 2 解法 2 (証明終) B 54 図形と方程式 191 R A
図形と方程式

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

点と直線の距離から、lと原点との距離を求めてみましょう。
最後の式の左辺と全く同じ式になるかと思います。

きなこ

ありがとうございます🙇‍♀️

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉