Mathematics
มัธยมปลาย
เคลียร์แล้ว
(3)のやり方をわかりやすく教えてください🙇⋱
例題 18
(ー)(
(1) 中心が点C (1,2) で, 半径が3の円
次のような円, 直線の方程式を, ベクトルを用いて求めよ。
(2) 2点A(2,3), B(-2, 5) を直径の両端とする円
二等分線
(3)
中心が原点である円の周上の点A(-1, 2) における接線
線分ABの
とする。
解答 求める図形上の点をP(x, y) とする。
価
(1)この円のベクトル方程式は
|CP|=3 すなわち |CP|2=9
A(1, 5)
M
CP=(x-1,y+2) であるから
(x-1)2+(y+2)²=9
(2)この円のベクトル方程式は
AP.BP=0
P.
(x-2,y-3), BP=(x+2, y-5) であるから
MP-OP (x-2)(x+2)+(y-3Xy-5)=0
すなわち
x2 -4 + y2-8y+15= 0 よって
(3) APOA または AP=1であるから AP.OA=0
AP=(x+1, y-2), OA = (-1,2)であるから
x2+(y-4)2=5
したがっ(x+1)×(-1)+(y-2)×2=0 よって x-2y+5=0 圀
-2=0
คำตอบ
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?
เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉
สมุดโน้ตแนะนำ
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8918
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6078
25
数学ⅠA公式集
5638
19
詳説【数学Ⅰ】第二章 2次関数(前半)~関数とグラフ~
5134
18