Mathematics
มัธยมปลาย
เคลียร์แล้ว

どうして最後、「合わせた範囲」になるのですか??

5 2 絶対値を含む不等式 0000 次の不等式を解け。 |x-1|+2|x-3|≦11 (1)x-4|<3x ズーム 則である。 (1)x-4≧0, x-40 の場合に分けて解く。 絶対値を含む不等式は、絶対値を含む方程式 [例題41] と同様に場合に分ける。 (2)2つの絶対値記号内の式が0となるxの値はx=1,3 よって, x<1, 1≦x<3, 3≦xの3つの場合に分けて解 く。 (2) UP 絶対値を含む 0 となる値を *-3<0 ずし, 方程式 x-10-1 なお, 絶対値を含む方程式では、場合分けにより,| | をはずしてできる方程式の解が場合分けの条件を満たす 方程式、不等 不等式につ かどうかをチェックしたが、絶対値を含む不等式では場合分けの条件との共通劇 をとる。 CHART 絶対値 場合に分ける (1) [1] x≧4のとき,不等式は x-4<3x [1] 解答 これを解いて x>-2 x≧4との共通範囲は x≥4 ① -(x-4)<3x [2] 例題 ま [1] [2 12のけ分 [2] x<4のとき,不等式は これを解いて x>1 x<4との共通範囲は 1 <x<4 求める解は,①と②を合わせた範囲で x>1 (2) [1] x<1のとき, 不等式は -(x-1)-2(x-3)≦11 よって 4 x- [1] 4 1 ≦x<1 [2] x<1との共通範囲は [2] 1≦x<3のとき, 不等式は x-1-2(x-3) ≦11 よって *≥-6 1≦x<3との共通範囲は [3] 3≦xのとき, 不等式は -6 3 1≦x<3 ② [3] x-1+2(x-3)≦11 よって *≤6 3≦xとの共通範囲は 3≤x≤6 求める解は,①~③を合わせた範囲で 4 ≤x≤6 3 練習 次の不等式を解け。 ③42 (1) 3|x+1|<x+5 (2)|x+2|-|x-1|>x 3 6

คำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉