Mathematics
มัธยมปลาย
เคลียร์แล้ว

黄色で区切ったところまではわかったのですが、
ピンクで引いた式が、なにをしているのかわからなかったので、教えていただけませんか。🙇

例題 290 群数列 [1] 思考プロセス 正の奇数の列{a} を、次のように第k群に 2-1 個の項を含むように分ける。 1 | 35 | 7, 9, 11, 13 | 15, 17, 19, 21, 23, 25, 27, 29 | 31, (2)777 は第何群の何番目の項か。 (1) 第10群の初項を求めよ。 目標の言い換え (1) 第10群の初項 奇数の列{a}の第何か? 第1群 第2群 第3群 第9群 第10群 1項 2項 2項 2項 +1項 (1 + 2 + 2°+... +2) 項 Action» 第k群の初項は, {(第k-1群までの項の総数) + 1} 番目とせよ (1) 第k群に含まれる項数は 2-1 であるから, 第1群から 第9群までに含まれる項の総数は 1+2+22+...+28 = = 1.(29-1) 2-1 = = 511 よって、 第10群の初項は{an}の第512項である。 ここで an=1+2(n-1) =2n-1 したがって,第 10群の初項は a512= 2x512-1=1023 (2) an=2n-1 = 777 とおくと n = 389 第9群までの項数を求め る。 初項 1, 公比2の等比数列 の初項から第9項までの 和である。 210 = 1024 を 覚えておくとよい。 {an} は初項1, 公差2の 数列である。 g よって, 777 はこの数列の第389 項である。 (-) ここで,777が第k群 (≧2) に含まれるとすると 1 + 2 + 2 + + 2k-2 < 389 ≦ 1 +2 +2 + ・ ・ ・ + 21 1 (2k-1-1) 1 (2-1)*% < 389 ≦ 2-1 2-1 ゆえに 2k-1390 ≦ 2k 2° = 256,2°= 512 であるから,この不等式を満たす自 然数kは k = 9 777が第9群の1番目の項とすると 1 +2 +22 + ・・・ +27 + 1 = 389 1-(2-1) +l = 389 より l=134 2-1 第1群までの項の 総数) 389 ≦ (第ん群ま での項の総数) んに適当な値を代入して 2k-1390 ≦ 2k を満たすんを見つける。 _は第8群までの項の 総数。 1(2°-1) 2-1 = 255 したがって, 777 は第9群の134番目の項
群数列

คำตอบ

✨ คำตอบที่ดีที่สุด ✨

図に描きました

ソラ

第8群までで2⁷個あって、そこから第9群の𝑙個分を足すと全体で389番目になるってことですね!納得できました。理解できて嬉しいです!!説明とてもわかりやすかったです、ありがとうございます!!

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉