Mathematics
มัธยมปลาย
เคลียร์แล้ว

(1)で△OAHはピタゴラス数の三角形なのでOHは3になるとみましたが、|a→|cos60°=5×1/2です。なぜ値が違うのでしょうか。

・8 内積/垂直 (2) 三角形OAB において OA =d, OB=bとし, |a|=5, |6|= 4, ∠AOB=60° とする. 点Aから 対辺OBに下ろした垂線をAHとし, ∠AOB の2等分線が線分AH と交わる点をCとする.さら に, 線分 BC の延長が辺 OA と交わる点をDとする. このとき、 (1) ab= (3) OC Ja+ (2) OH= == (4) OD a 垂線の足のとらえ方 右図のように, 直線 OX に点Y から垂線を下ろし、その 足をHとする. OH を OX と OY で表そう. OH = tOX とおくと, HY = OY - OH .. OY OX=t|OX 12 と OX が垂直だから、 (OY-tOX) ・ OX = 0 (日大生産工) 4 これよりt= OX-OY |OX |2 (これは実数) OF=XOX となる. 0 H 解答言 |X|2 -X ||=5, |6| = 4, ∠AOB=60° 1 (1) 4.6=||||cos60°=5・4・ =10 2 (2) OH = s6 とおく. AHOB より AH・OB = 0 ..(OH-OA) OB=0 .. (sba) b=0 B(b) 4 H 30° 130° 0 D 5 A (a) α-b よって,s= = 10 5 OH= 56 b 1612 42 8' (3) OCはAOBの2等分線であるから AC:CH=OA: OH であり,∠AOH=60° より OA: OH=2:1である. 5 つまり AC:CH=2:1で(2)より OH= だから 8 3 OC=OA+ OH=1+126 1→ 5 a+ 3 (4) Dは直線BC上にあるので, OD=0B+rBC=0B+r(OC-OB)=6+1(130 +1/+1 と表すことができる. Dは直線OA上にあるから①の人の係数は0であり, 5 12 1+1(1-1)=0 t= 1= 12 7 1→ これを①に代入すると, OD= ta= 3 注 解答前文のOH には名前がついていて, 「OH は, OY の OXへの正射影 ベクトル」 (OXに垂直な方向からOY に光を当てたときに OX 上にできる OY の影が OH, という意味). 前文のOH の式を正確に覚えら れるならそれを使ってもよいが OH =sh とおいて(前文の式を 導くように解く方が間違えにく だろう.なお, △AOHに着目 5 ると OH=OAcos60°=とな これを用いて, 「OHはOBと同じ向きで大き が のベクトル OB と同じ 2 きの単位ベクトルは一OB 24 5 OH=5OB=OBJ としてもよい。 8

คำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉