Mathematics
มัธยมปลาย

72.1
原点Oについての文章は必要ですか?
また必要ならなぜ必要なのでしょうか?

[0] 基本例題 12 座標を利用した証明 (1) 食 (1) △ABCの重心をGとする。 このとき, 等式 ABCT)ALLED AB'+BC2 + CA'=3(GA²+GB2 + GC2) が成り立つことを証明せよ。 9 $ (2) △ABCにおいて, 辺BC を 1:2に内分する点をDとする。 このとき, 等式 2AB'+AC2=3AD' +6BD' が成り立つことを証明せよ。 TOLOUR MAT 指針 座標を利用すると, 図形の性質が簡単に証明できる場合がある。 そのとき 0 31 けで AB この座標軸をどこにとるか、 与えられた図形を座標を用いてどう表すか がポイントになる。そこで後の計算がらくになるようにするため,問題の点がなるべく 多く座標軸上にくるように 0が多いようにとる。 (1) は A(3a, 36), B(-c, 0), C(c, 0) とすると, 重心の性質からG(a,b) (2) l A(a, b), B(-c, 0), C(2c, 0) CHART 座標の工夫 1 0 を多く ② 対称に点をとる Let 解答 (1) 直線BC をx軸に, 辺BCの垂直二等分線をy軸にとると,| 線分BCの中点は原点0になる。 A (3a, 36),B(-c, 0), C(c, 0) とすると, Gは重心であるからG(α, b) と表される。 よって AB2+BC2 + CA 2 (1) +8+-- =(-c-3a)² +962+4c²+(3a-c)2 +962 ① の場=6a²+662+2c2 ...... 0212 =3(6a²+6b²+2c²) HOMEB 平行四辺 GA2+ GB2+GC 2 (1=(3a-a)²+(36−b)²+(-c-a)²+b²+(c-a)² + b² ② ① ② から AB2+BC2+CA²=3(GA+GB2+GC2) (②2) 直線BCをx軸に点D を通り直線BC に垂直な直線を y軸にとると,点Dは原点になり, A (a,b), B(-c, 0),( (20) と表すことができる。 24+ (x + (11) M よって 2AB'+AC'=2{(-c-a)+(-6)^}+(2c-a)+(-6) 2 =2(c²+2ca+a²+b²)+4c²−4ca+a²+6² 2)2 2007 =3a²+3b²+6c² 3AD²+6BD²=3(a²+b²)+6c² ①②から 基本 71 ② B (-C,0) 2AB²+AC²=3AD²+6BD² +3,0 0-8 A 基本 85 EA(3a, 36) 0 (G (a,b) (c, 0) x y A(a, b) (E) 4 B12- (-c, 0) OD a(s) 2−)Ɔ (^_{}ª_{{I_DA Mɛ (1) 3DSMATRROS:8,9% 音の点をPとする。このとき,等式 117 (2c, 0) x ET 3章 12 直線上の点、平面上の点

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉