Mathematics
มัธยมปลาย

赤線で囲った部分は要するに何を言ってるんですか?

それと、赤線で囲ったところの上の式変形、どういう思考回路で出てくるんですか?

た接線 基本 次の曲線上の点P, Q における接線の方程式をそれぞれ求めよ。 x2 田線の接線 q² + y² (②2) 曲線x=et, y=et のt=1に対応する点 Q ttel, a>0, b>0 基本 81 める。 7/2 20 ((1) 楕円 指針 「解答」 (1) 両辺をxで微分し,y'′ を求める。 -=1上の点P(x1, y1) 62 2²2 +22²2 62 接線の傾き=微分係数 まず, 接線の傾きを求める。 dy dt dy dx dx dt y-Vi=- よって =1の両辺をxについて微分すると 2x 2y ゆえに,y=0のときy= 62x a² 62 a'y よって,点Pにおける接線の方程式は,y≠0 のとき 62x1 a²y₁ 点Pは楕円上の点であるから (2) th + •y'=0 dy dx = (2) dy dt dx dt X1X (x-x1) すなわち 2 a² 62 a² 62 y=0のとき, 接線の方程式は y=0のとき, x1 = ±α であり, 接線の方程式は これは ① で x = ±α, y=0 とすると得られる。 したがって 求める接線の方程式は (2) dx = e², dy = =et, dy=e-t²(-2t)=-2te-t² dt dt -2te-t² et + = + X₁² y₁² 2 q² 62 2 yiy x₁² y₁² + =1 X1X Viy 2 62 + t=1のとき de, 1/2) = -2/2 Q(e, dy == dx e² したがって 求める接線の方程式は -=1 [(2) 類 東京理科大 ] /p.142 基本事項 2. 基本 81 x1x yiy a² =-2te-t²-t + =1 62 を利用。 1 x=±α 2 ext y-1---²/(x-e) tah5 y=- すなわち 3 陰関数の導関数につい ては, p.136 を参照。 ただし, a>0 5 両辺に12/12 を掛ける。 傾き b²x₁ a²y₁ -a x=-a yA 3e10 | 次の曲線上の点P, Q における接線の方程式をそれぞれ求めよ。 83 _ (1) 双曲線x2-y2 = d² 上の点P(x1, y1) 0 2 YA b p.137 参照。 2539 O -b P(x1,y1) a x=a -y=-2²/x+³ Q(t=1) 153 EY70 4章 2接線と法線

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉