Mathematics
มัธยมปลาย

104.2
実際に記述問題として試験に出てきても
()の中に2枚目の写真のように
(a,bは整数で100≦a≦999,0≦b≦999)
と書いてもいいのですか?

470 1000000 基本例題 104 倍数の判定法 (1) 5桁の自然数 2576 が8の倍数であるとき,□に入る数をすべて求めよ。 (2) 6桁の自然数Nを3桁ごとに2つの数に分けたとき, 前の数と後の数の差が 7の倍数であるという。 このとき, N は 7の倍数であることを証明せよ。 (例) 869036の場合 869-036833=7×119 であり, 869036=7×124148 [(2) 類 成城大] 指針 (1) 例えば, 8の倍数である 4376は, 4376=4000+376=4・1000+8・47 と表される 1000=8・125は8の倍数であるから, 8の倍数であることを判定するには,下3桁が80 (ただし,000の場合は0とみなす) 倍数であるかどうかに注目する。 (2) Nの表し方がポイント。3桁ごとに2つの数に分けることから, N=1000a+b (100≦q≦999,0≦b≦999) とおいて,Nは7の倍数N=7k(kは整数)を示す。 解答 (1) 口に入る数をα (a は整数, 0≦a≦9) とする。 下3桁が8の倍数であるとき, 2576は8の倍数となるから 700+10a+6=706+10a=8(a+88) + 2 (a + 1 ) 2 (α+1) は8の倍数となるから, α+1は4の倍数となる。 よって α+1=4, 8 すなわち α = 3, 7 したがって、□に入る数は 3, 7 (2) N=1000a+6 (a,bは整数;100 ≦a≦999,0≦b ≦999) とおくと,条件から, a-b=7m (mは整数)と表される。 ゆえに, α=6+7m であるから N=1000(b+7m)+b=7(1436+1000m) したがって, N は 7の倍数である。 例えば,987654122 は、 右の図において, (① +③)-②から (987+122)-654=455=7×65 したがって, 987654122は7の倍数である。 練習 ②104 基本事項 706=8・88+2 0≦a≦9のとき 1≦a+1≦10 検討 7の倍数の判定法 上の例題 (2) の内容を,一般の場合に拡張させた、 次の判定法が知られている。 一の位から左へ3桁ごとに区切り、左から奇数番目の区画の 和から、偶数番目の区画の和を引いた数が7の倍数である。 869036-869000+36 | = 869×1000+36 のように表す。 10016+7000m =7・1436+7・1000m なお,この判定法は, 10°+1=7×143, 10°−1 = 7×142857, 10°+1 = 7×142857143, ことを利用している。 例987654122 3桁ごとに区切ると 987654/122 ①② (1) 5桁の自然数 493の□に,それぞれ適当な数を入れると9の倍数になる このような自然数で最大なものを求め上 (2) 5桁の自然数 ! ②
N = 1000 a + b la, 617 J₁ (00≤ a ≤999, 0≤ b = 299 とおくと、 「m(mは整数)となる必要がある。 = a = b a 7m+b=l N = Tooo ( 7m + b ) + b = 7000 m + Coolb = 7 ( 1000 m + (436) 17= #1, 2 NIF 7 a 15 # £07. 143円 71001 A KOKUYO

คำตอบ

ยังไม่มีคำตอบ

ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉