A.
ψ(x,y) = 1/2ln(x^2 + y^2) …❶
w(x,y) = ∂^2ψ/∂x^2 + ∂^2ψ/∂y^2 …❷
答えが合わないのでどこかにミスがありますが、ご参考下さい。
❶について、
x^2 + y^2 = t
ψ(x,y) = 1/2lnt
∂ψ/∂t = 1/2t
∂t/∂x = 2x
∂t/∂y = 2y
∂ψ/∂x = ∂ψ/∂t・∂t/∂x = 1/2t・2x = x/(x^2 + y^2)
∂^2ψ/∂x^2 = (1/2t・2x)' = -x/t^2 + 1/t
= (x^2 + y^2 - x)/(x^2 + y^2)^2 …❸
∂ψ/∂y = ∂ψ/∂t・∂t/∂y = y/(x^2 + y^2)
∂^2ψ/∂y^2 = (1/2t・2y)' = -y/t^2 + 1/t
= (x^2 + y^2 - y)/(x^2 + y^2)^2 …❹
❸,❹、❷へ代入して、
w(x,y) = {(x^2 + y^2 - x) + (x^2 + y^2 - y)}/(x^2 + y^2)^2
= {2(x^2 + y^2) - x - y}/(x^2 + y^2)^2
よって、
w(1,2) = (2(1^2 + 2^2) - 1 - 2)/(1^2 + 2^2)^2
= 7/25
Fin.