Mathematics
มัธยมปลาย

【2⠀】がどうやって求めるか分かりません。できるだけ詳しく解説して欲しいです🙇‍♂️

5(1) AABCの内心をIとするとき, 右の図の角 α, βを求めよ。ただし, 点DはAIとBCの交点である。 A 内心 35% 30° B。 B D C (2) △ABCの内心をIとし, 直線 AI と辺 BC の交点をD とする。AB=8, BC=7, AC=4であるとき, AI:ID を求めよ。 4:2.3:3 の。

คำตอบ

角の2等分線の定理とメネラウスの定理を使います。

kohaku

内心の性質とメネラウスの定理を一緒に使うんですね!
難しいけどやっと理解出来ました!比率が苦手ですけど頑張ります!ありがとうございます🙇‍♂️

さい先生

【補足】
メネラウスの定理を使いましたが、別解も(というか、おそらく解答集に書いてある)紹介しておきます。
角の2等分線の定理を2回使うやり方です。
頂角Aの2等分線で定理を使って、BDの長さを求めます。
続いて、△BDAで頂角Bの2等分線で定理を使うと、AIとIDの長さの比が出ます。

、、、こっちの方が簡単でしたね😅

kohaku

△BDAで頂角Bの二等分線から計算が分かりません。良ければ途中の式も教えてください🙇‍♂️

さい先生

頂角Aについてと同じです。

kohaku

BD:BC=2:3みたいにBDが求まる式を立てればいいんでしょうか??

さい先生

そうですね。BDの長さが決まってしまえば、この後もう一回、角の2等分線の定理を使うことで、求める比を出すことができます。

kohaku

ありがとうございます!理解出来ました!

แสดงความคิดเห็น
ข้อสงสัยของคุณเคลียร์แล้วหรือยัง?

เมื่อดูคำถามนี้แล้ว
ก็จะเจอคำถามเหล่านี้ด้วย😉