学年

質問の種類

数学 高校生

どうして2回の試行を行っているのに反復試行を使っていないのでしょうか?あと、(2)の確率分布表のPが3/1になるのはどうしてですか? 解説お願いします🙇

10箱の中に1から3までの数字を書いた球がそれぞれ1個ずつ、計3個入っている。 この箱の中から1個の球を取り出すことを2回行う。 (1)1回目に取り出した球を元に戻して2回目を取り出す場合 1回目、2回目に取り出した球に書かれた数字をそれぞれX 023 とする。x=2 11 ア ウ X=1 となる確率はP(X=1- Y=2 となる確率はP(Y=2)= であり, イ I オ X=1 かつ Y = 2 となる確率はP(X=1, Y=20) = である。 また、確率変数Xとは キ 12 23 7x344 2x = +5x= キ に適するものを、次の① ② のうちから一つ選べ。 ① 独立である 独立でない 1+2+3 このとき, X, XY の期待値 (平均) はそれぞれE(X) E(XY= であり, X, X+Y の分散はそれぞれV(X) V(X+1)= ス である。 1/123 (12) +2x3+5% 14449-4 (1-2)/32+(2-2-2)^(1/3 +1/+1 (2)1回目に取り出した球を元に戻さずに2回目を取り出す場合 1回目, 2 回目に取り出した球に書かれた数字をそれぞれ X', Y' とする。 X' = 1 となる事象を A, Y' =2となる事象をBとすると, セである。 また,E(XY)である。 ①②③ セ の解答群 123 α=1,A M Y=2B (1/2) ( WF 14 ① 事象A と事象 Bは独立 2 事象 A と事象 Bは従属 ソ に適するものを、次の①~③のうちから一つ選べ。 ② ~ P(A) = P(x-1)=1 / PBB) = Pα==== P13 2+216 ③ 36計 x12361

回答募集中 回答数: 0
数学 高校生

(2)の無数にあるということは無限にあるということですか?aの値がどれだけ大きくなっても成り立つということですか?

総合 楕円 C:7x2+10y2=2800の有理点とは, C上の点でそのx座標, y座標がともに有理数である 24 ものをいう。 また, Cの整数点とは, C上の点でそのx座標, y 座標がともに整数であるものを いう。 整数点はもちろん有理点でもある。 点P (-200Q (200) はCの整数点である。 (1)実数αを傾きとする直線 la : y=a(x+20) とCの交点の座標を求めよ。 (2)(1) を用いて, Cの有理点は無数にあることを示せ。 (3) Cの整数点はP と Q のみであることを示せ。 実 [中央大] 本冊数学C 例題150 よって ゆえに (1) y=a(x+20) を 7x2+10y2=2800に代入して 7x2+10{a(x+20)}=2800 (10a2+7)x2+400a'x +4000a²-2800=0 (x+20){(10α²+7)x+200α²-140}=0 200a2-140 ←C と la の方程式を連 よって x=-20, 10a²+7 y=a(x+20) から, x=-20のとき y=0 200a2-140 280a x=- のとき y= ←y JZ e 立して解く。 ←楕円 C, 直線 la とも 点P(200) を通るか ら, x+20 を因数にもつ。 有理数 =実数のうち整数か分 かで表せる数の総称 10a2+7 10a²+7 したがって, 直線 l と楕円 C の交点の座標は =a = a(-2 200a2-140 +20 10a²+7 200a2-140 280a (-20, 0), 10g2+7 10a²+7 (2) α が有理数のとき, (1) で求めた交点 200a2-140 280a 10g²+7 10a²+7 の座標 はともに有理数であるから, 有理点 であり, 楕円 C 上および直線 l 上 にある。 > 10a²+7 (>0), 200α²-140,280αは有 27 有理数 理数で, は有 有理数 y la #. JA Pa Pbb (0) C るから 2/70 また,有理数 a, b が α≠6を満たす とき, 直線 la, l は異なるから,直 線 la, lo と楕円Cの点(-200) 以外の交点 Pa, P6 の座標は異なる。 したがって, 楕円 C の有理点は無数にある。 -20 120 0200) Qx P -2√70 ←la: y=a(x+20) は定 点 (-20, 0) を通ること と傾きαの変化を考え ると,図からわかる。 (3)7x2+10y2=2800 ① を満たす整数x, y を求める。 ①から 10y2=7(400-x2) 10と7は互いに素であるから,y2は7の倍数である。 よって,yも7の倍数である。 また, 7x2=10(280-y2) ≧0から 0≤y²≤280 よって, yのとりうる値は y=0, ±7, ±14 ←a, b が互いに素で, an がbの倍数ならば, nは6の倍数である。 (a, b, n は整数) ←142=196,212=441

未解決 回答数: 1
理科 中学生

この表に間違いがあったら教えてください

フッ化物オン|塩化物体ン 契化物イオン ヨウ化物オン 水藤化物オン 化学内の 水来1オン 形角酸イオン F1 塩化水素 アッ化木素 Hcl HF アッセトリラム|宝化ナHウム CI Br 臭化水業 I ョウ化不茶 OH No1 永酸化水業|飲集 H1 HBr HI 真化ナトリウムヨウイ化ナトリウム HMo。 水政化リウム角酸ナトリウム HoH トリクムイオン Na' NaF Nocl Na Br 臭化カリウム NaI ヨウ化カリウム NaoH | Na No3 化かリウム育画家力りウム リウムイオ フッイヒクリウム 塩化カリウム k* KF KC」 KBr K1 kOH KNO3 銀イオン フッイと銀 塩化銀 臭化長 ヨウイ化銀 Agt 銅(1)イオン Agt Agel hgBr ^goH Agoti| AgNo. フッ化動 塩化間 奥化銅 ヨウに銅 水酸化詞 万有酸銅 Cut CuF CuCl CuBr Cul CUOHI CUNO3 アンモーウムイオン| フッ化アンモーウム塩化アンモニウム臭化アンモニウイョウ化アンモニウム水酸化たモース 政アモニウム MH+Br NH4OH| NH No3 NHy NH+F NHyCl MH+1 マグネシグムイオン|7Mマクネシウム様化スグネョウム|化マグネンウレ||ョウ化てグネラウム酸化マネシク有験でアネシウム MgFa | Mgcle ルラウムイオン ファイ化カルシウム|塩化カルジウム Ca Fz | Mgla MgoH.| Mgcha ウ化カらウム 酸化カルシカム有酸カルシウム Mg Br2 2f Mg 2 2t Ca' Cocl2 CaBrz Calz ColoH)。 | Ca(Ne)

回答募集中 回答数: 0
1/3