学年

質問の種類

数学 高校生

青い下線がしてあるところから,その下の式になるまでの,変形の仕方がわからないので教えてください

42 重要 例題 21 等式を満たす多項式の決定 00000 | 多項式 f(x) はすべての実数xについてf(x+1)-f(x) = 2x を満たし,f(0)=1 であるという。このとき, f(x) を求めよ。 [一橋大〕 基本15 例えば, f(x) が2次式とわかっていれば,f(x)=ax2+bx+c とおいて進めることが できるが,この問題ではf(x)が何次式か不明である。 →f(x)は n次式であるとして,f(x)=ax+bx+... a=0, n≧1) とおいて 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺 2x と比較するこ とで次数nと係数 αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 TRAHD f(x)=1 | この場合は, (*)に含ま れないため、別に考えて いる。 f(x)=c(cは定数) とすると, f (0)=1から 解答 これはf(x+1)-f(x)=2x を満たさないから,不適。 よって, f(x)=ax+bx-1+...... (a≠0, n≧1)(*) とす ると f(x+1)-f(x) =a(x+1)"+6(x+1)"'+......-(ax”+bx-1+) =anx"-1+g(x) ただし, g(x)は多項式で,次数はn-1より小さい。 f(x+1)-f(x)=2xはxについての恒等式であるから,最 高次の項を比較して ...... · D, an=2 ・② (x+1)x1 =x"+nCix”-1+nCzxn-2+・・・ のうち, a(x+1)"-ax” の最高次 の項は anx"-1で残り この頃はn-2次以下とな ある。 P) 3 n-1=1 ①から n=2 ゆえに,②から a=1 anx-1と2xの次数と 係数を比較。 このとき, f(x)=x2+bx+c と表される。 f(0) 1から c=1 =2x+6+1 また f(x+1)-f(x)=(x+1)^+b(x+1)+c-(x2+bx+c) c=1としてもよいが, 結果は同じ よって 2x+b+1=2x この等式はxについての恒等式であるから 6+1= 0 係数比較法。 すなわち b=-1 したがって f(x)=x-x+1

解決済み 回答数: 1
数学 高校生

この解説の前半がよくわからないのでもっと詳しくわかりやすい解説を求めてます! 特にf(x+1)-f(x)   =a(x+1)ⁿ+b(x+1)ⁿ⁻¹+・・・-(axⁿ+bxⁿ⁻¹+・・・)  から   =anxⁿ⁻¹+g(x) となるところがよくわからないです

重要 例題 21 等式を満たす多項式の決定 00000 多項式f(x)はすべての実数xについてf(x+1)-f(x)=2x を満たし,f(0) = 1 であるという。このとき, f(x) を求めよ。 〔一橋大〕 基本15 指針 例えば,f(x)が2次式とわかっていれば,f(x)=ax2+bx+c とおいて進めることが できるが,この問題ではf(x)が何次式か不明である。 →f(x)はn次式であるとして,f(x)=ax+bx-1+......(a≠0,n≧1) とおいて 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺2.x と比較するこ とで次数nと係数αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 5 基本 解答 f(x)=1|この場合は,(*)に含ま れないため、別に考えて f(x) = c(cは定数) とすると, f (0)=1から いる。 これはf(x+1)-f(x)=2x を満たさないから,不適。 よって, f(x)=ax+bx-1+(a0n≧1)(*) とす ると f(x+1)-f(x) =a(x+1)"+6(x+1)"'+.....-(ax+bx"-1+…………) =anxn-1+g(x) ただし, g(x)は多項式で,次数はn-1より小さい。 f(x+1)-f(x)=2xはxについての恒等式であるから,最 高次の項を比較して (x+1)" =x+nCixn-1+nCzx-2+... のうち, a(x+1)"-ax” の最高次 の項は anx-1 で,残り の項はn-2次以下とな る。 n-1=1 ... ①, an=2 ①から n=2 ゆえに、②から a=1 c=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から anx-1と2xの次数と 係数を比較。 またf(x+1)-f(x)=(x+1)2+6(x+1)+c-(x2+bx+c) c=1としてもよいが, =2x+6+1 結果は同じ よって 2x+b+1=2x この等式はxについての恒等式であるから b+1=0 係数比較法。 すなわち b=-1 したがって f(x)=x-x+1 POINT 次数が不明の多項式は,次と仮定して進めるのも有効

解決済み 回答数: 2
数学 高校生

数学II恒等式の問題です。 写真の練習21で、恒等式の最高次の係数を比較することは理解しているのですが、この[1]と[2]を記述する意図が分からないので教えて頂きたいです。よろしくお願いします。

この連立力性を解く 練習 f(x) は最高次の係数が1である多項式であり,正の定数a,bに対し,常に @21 f(x2)={f(x)-ax-b}(x-x+2) が成り立っている。このとき,f(x)の次数およびα,bの を求めよ。 HINT f(x) n次式であるとして, 恒等式における両辺の式の次数が等しいことに着目する。 an=0, n=1, n≧2 で分けて考えるとよい。 f(x2)={f(x)-ax-b}(x²-x+2) f(x) をn次式とすると ① とする。 [1] = 0 すなわちf(x)=1のときは明らかに①を満たさず, 不適。 [2] n=1のとき ←① の左辺は 1, 右辺は 3次式 f(x)=x+c(cは定数)とする。このとき,①の左辺は2次 ←f(x2)=x2+c 式である。 a=1のとき, ① の右辺は3次式となるため,不適。 a=1かつ6=cのとき,右辺は0となるため,不適。 a=1かつb≠cのとき,右辺は2次式となる。 このとき (① の左辺) =x2+c (①の右辺)=(c-b)(x2-x+2) b-c≠0であるから, ①を満たす b, cの値は存在しない。 よって、不適。 [2] n≧2のとき ①の左辺は 2 次式で, 右辺は (n+2) 次式である。 ←f(x)-ax-b=(1次式) ←f(x)-ax-b=0 ←f(x)-ax-b=c-b (1) (左辺)=x+2x+4x +8x + 16x -2x-4x4-8x3-16x2 =x-64 よって、等式は証明された。 (2)()=a²x²+a²y²+a²z²+b²x² +c²x²+c²y²+c² z² - (a +2abxy+2bcyz+2caz =ay2+az+62x2+62z -2abxy-2bcyz-2ca (右辺)=dy2-2abxy+b2x2+1 +c2x2-2cazx+a222 左辺と右辺が同じ式になるから, 練習 a+b+c=0のとき,次の等式た ② 23 a² (a+b)(a+c) (6+ + a+b+c=0より, c = -(a+b a² (左辺 = + (a+b)(-b)+( ←この式の1次の項の係 数は b-c -a-b3+(a+b) ab(a+b) したがって,等式は証明され 別解 a+b+c=0 より, a+b=-c,a+c=-b

解決済み 回答数: 1
1/10