学年

質問の種類

数学 高校生

(1)のp(k)について、残りのk-2枚の色の決め方をもし3c3にしてしまうとどんな問題が起きますか?

10 確率の最大値 赤、青、黄3組のカードがある. 各組は10枚ずつで, それぞれ1から10までの番号がひとつず つ書かれている。この30枚のカードの中からん枚 (4≦k≦10) を取り出すとき 2枚だけが同じ番 号で残りの (k-2) 枚はすべて異なる番号が書かれている確率を(k) とする. (1) p(k+1) p(k) (4≦k≦) を求めよ. (2) p (k) (4≦k≦10) が最大となるkを求めよ. (福岡教大/一部省略) 確率の最大値は隣どうしを比較 確率p (k) の中で最大の値(または最大値を与えるk)を求める 問題では,隣どうし[p(k)とp(k+1)] を比較して増加する[p(k)≦p(k+1)] ようなkの範囲を求 める.pkpk+1)の大小を比較すればよいのであるが, (k) p (k+1)は似た形をしているの p(k+1) p(k+1) で p(k) である. を計算すると約分されて式が簡単になることが多い。 p(k) 1p(ksp (k+1) ■解答量 R BE (48860) (1) 30枚からん枚 (4≦k≦10) を取り出す取り出し方は 30Ck通りあり、これ らは同様に確からしい。このうちで題意を満たすものは、 同じ番号の2枚につい て番号の選び方が10通りで番号を決めると色の選び方が3C2通り、異なる番号 の(k-2)枚について番号の選び方が 9C-2通りでそれを1つ決めると色の選び 方が3-2通りある. 10-3-9Ck-2-3-2 10 10 10 目 ex① 1. C₁ パターン よって, p(k)=- 30Ck p(k+1)_gCk-13k-1 30Ck p(k) 三 30Ck+1 9Ck-2-3k-2 10.3を約分 (k+1)! (29-k)! 30! 2/5+1)(11-b) 30! 9! k! (30-k)! (k-1)! (10-k)! (k-2)! (11-k)! 9! --3 順に, 30 Ch. 9Ch-1. 30 Ch+1 9Ch-2 最後の3は3-13-2 を約分. X

解決済み 回答数: 1
数学 高校生

2枚目のソを教えて頂きたいです。 3枚目が解答解説なんですが、少し見にくいかもしれないんですけど→の式変形が分からないです… お願いしますm(_ _)m

P2 16m P4. 数学ⅡI・数学B (2)線分QkQk+1 の長さが変化するときの螺旋の長さを考えよう。次のように円弧をつないで いくと、螺旋をつくることができる。 Don (I) 平面上に2点 P1, Q1 を, P1Q1=1を満たすようにとる。 (II)kを自然数とする。 2点Pk, Q に対して、点Pから、点Qを中心として時計回りに 90° だけ半径 PkQkの円弧をかき、その終点をPk+1 とする。 そして、直線Pk+1Qk 上の点 Q1 を,点Q に関して点Pk+1 の反対側に線分Q& Qの長さが次の条件を満たすよ うにとる。 条件 k=1のとき, Q1Q2= k2のとき,QkQk+1=Pk=1Qk-1 円弧 Pk Pk+1 の長さをbとすると, bg = サ Q2 Q3=PgQ, ① Q3Q4=P2Q2② Obn+2 = bn+1 + bn bn+2 = bn+1+26m 4 bn+2 26n+1+bn bn+2 = 2bn+1 + 26m b3 = b2+b. b3=2624 は3項間の漸化式サ を満たすことがわかる。 b1=PP2 = -11b2=P2P=ル ( の解答群 bs/zba-St 200 + b4 = 2 · ²/²π- [T 2 = 21. キ ク 学 (3) Q+Qs = P2Q4 _____ MF -π, b₁ = 12 3 -23- A ケ5 -πであり、数列{bn} 2×5. コユ bz= PaPa b4=P4P5 Cn= bn+2 bn+1-bn bn+2= bn+1-2bn 313 VERSTAG 018-3- |+a) bn+2 = 2bn+1 = bn bn+2=26n+1-26 (数学ⅡI・数学B 第4問は次ページに続く。) 3130 (0) 1 341330.00 0.7-1.67 ado-d

解決済み 回答数: 1
1/2