学年

質問の種類

物理 高校生

最後の文について質問です。なぜ軽い原子核は核融合を起こしやすく、重い原子核は核分裂を起こしやすいのかがいまいちよく分からないので教えてほしいです。

とう かせい 質量とエネルギーの等価性 アインシュタインの相対性理論によると, 質 量はエネルギーの1つの形態であり, 質量mがエネルギーに転化すると mc2 だけのエネルギーEが発生する。 E=mc2 mc2 は静止エネルギーとよばれる。 ちょっと一言 質量はいわばエネルギーの貯蔵庫。 mc' は鉛筆が一本消滅する と,大都市が吹っ飛ぶくらいの大きなエネルギーだが,原子核反応 というkey がないと貯蔵庫の扉は開かない。なお, 単位は m[kg], c [m/s]ならE[J] だ。単位的には1/2m2と同じこと。 結合エネルギー 質量の大きなものほど静止エネルギーが大きいから,バ ラバラ状態の方が原子核の状態より高いエネルギーにあることになる。 そ のエネルギー差を結合エネルギー ⊿E という。 AE=Am c² 結合エネルギーは質量欠損⊿m と兄弟関係の量だ。 かくりょく ちょっと一言 原子核をバラバラにしようと思うと, 核子間に働く引力 (核力) に逆らって外から力を加え, 引きはがしていくという仕事をしなけ ればならない。この加えた仕事 (エネルギー)が質量という貯蔵庫に 蓄えられ, バラバラ状態の方が重くなるというわけだ。 結合エネル ギーは結合を壊しバラバラにするためのエネルギーだ。 High 結合エネルギーを核子数 (質量数) で割った値⊿E/A を核子1個当たり の結合エネルギーという。 これは原子核の安定性の目安になり、値の大き なものほど安定である。 原子核から核子1個を抜き出せば残りはもはや別 の原子核になるからだ。 たとえば酸素0から陽子1個を取れば窒素 Nに なってしまう。 かくゆうごう 軽い原子核はまとまった方が安定で核融合を起こしやすく, 重い原子核 は分かれた方が安定で核分裂を起こしやすい。

解決済み 回答数: 1
英語 高校生

1題だけでもいいので教えてください🙇‍♀️

3 誤っている箇所を下線部 ① ~ ④のうちから1つ選び, 正しい形を書きなさい。 1. The parents didn't let their children ②to go out ③ alone after ④dark. 誤っている箇所 ( ) 正しい形 2. Jane saw this buy ②some ③juice ④at the convenience store. 誤っている箇所( ) 正しい形 3. We made ② to pay ③a dollar for the ticket. 誤っている箇所 ( 正しい形 4. I have never heard ② him ③ spoke like that before. 誤っている箇所( [T a 正しい形 内から適切な語を選び, )に入れなさい。 また, 下線部に入れるのに適切なものを asal bluoda sa A~Dの中から選び, 記号で答えなさい。 1. I had no time to ( E ) for lunch, so 2. We had so many things to ( 3. My father forgot to ( 4. Idon't( ), so ) the car key, so _ ) anything about flowers, so q edi xais bluoda oda bring/buy/cook/know Do AQT 16 hate A I had my sister choose some at the flower shop B I had my husband make a list of them C we were made to wait outside for a while D John made me some sandwiches 2 Rapideralig roange set lib nodws 5 日本語に合うように、英文を書きなさい。ただし、指定された条件で書くこと。 1. ユカはお年寄りの男性がスマートフォンをバスの中で落とすのを見た。 (an elderly man, smartphone を使って) salli ne to cod 2. 私は姉が誕生日ケーキを焼くのを手伝った。(bake を使って) B

未解決 回答数: 1
数学 高校生

・2)の証明の「同様に」以降はなぜr≠0とだけ仮定するのですか?0≦r<lの否定になるんですか? ・1)の証明の、「」が何を言っているかわからないです。2)の何をどう利用したんですか? 本当に理解できないので簡単めに解説をお願いしたいです。😢

446の会社数は無数 基本事項 ① 最大公約数と最小公倍数 (12) 24.…… 2つ以上の整数に共通な約数を,それらの整数の公約数といい、公約数のうち最大 のものを最大公約数という。 また,2つ以上の整数に共通な倍数を,それらの整数 の公倍数といい,公倍数のうち正で最小のものを最小公倍数という。 一般に、公約数は最大公約数の約数 公倍数は最小公倍数の倍数である。 TA 注意 最大公約数をG.C.D Createst Common Divisor) または G.C.M (Greatest Common Measure), 最小公倍数を L.C.M (Least Common Multiple) ともいう。 ② 互いに素 2つの整数αの最大公約数が1であるとき, a,bは互いに素であるという。 ③3 最大公約数 最小公倍数の性質 2つの自然数a,b の最大公約数をg, 最小公倍数を1とする。 aga, b=gb' である とすると,次のことが成り立つ。 a' と'は互いに素 gdg b 21=ga'b'=a'b=ab' 解説 <最大公約数、最小公倍数> 上の1) 2) を証明してみよう。 それには,まず2) から示す。 [2) の証明]a,b,c, ······ の最小公倍数を 任意の公倍数をとする。 kを1で割ったときの商を Q, 余りをrとすると a,bはgでひろいろ なかった素因数の あつまり ~ 1 Y = 77₂ 318 7 きずり h=qlty...... ①,0ょくし -0 もしもの倍数であるから, k=ak', l=gl' (k', I'は整数)と表され axsh Tabの任にかけた rkgl=g(k-ql ) より はαの倍数である。 ab=gl 同様に,b, G…. の倍数であるから、はa,b,c,….. の公倍 w z C 数である。 「ここで、y=0 と仮定すると、より小さい正の公倍数rが存 在することになるが,これはが最小公倍数であることに矛盾する。」 ゆえに = 0 よって, ① はん=ql となり, kは1の倍数である。 [1) の証明] α, b, c, ······ の最大公約数を g, 任意の公約数をmとする。 「1をgとmの最小公倍数とすると, はgとmの公倍数であるから 2) より αはもの倍数である。 同様に, b, c, ...... もの倍数である。 したがって は a, b, C....... の公約数である。 ここでgが最大の公約数であるから l≤g 12g ゆえに lg 一方, 1はgとmの最小公倍数であるから よって,gとmの最小公倍数がg に一致し, gはmの倍数である。 すなわち, 任意の公約数は最大公約数g の約数である。 大きい所どり! xy X² Yo X'Y = l この等式については、 次の 「§18 整数の割 り算と商および余り」 で詳しく学習する。 <背理法。 Fag (A)) 1) を示すにぼg と mの最小公倍数が であることを示せば よい。 ASB かつ A≧B ならば A=B この論法は整数の性 質に関する証明でよ

回答募集中 回答数: 0
1/6