学年

質問の種類

数学 高校生

青チャート数学Ⅲ77ページの練習45です 重要例題45の⑵と同じ様に 練習45もこのようにやったら間違いですか?

(1) すべての自然数nに対して、1+1が成り立つことを証明せよ。 1 1 k=1 1 (2) 無限級数1+ n + +....+ +...... は発散することを証明せよ。 2 3 ・基本 34, 重要 44 指針 (1) 数学的帰納法によって証明する。 (2) 数列{1} は0に収束するから、p.63 基本例題 34のように,p.61 基本事項 ② を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 n2" とすると k=1 k k=1 1/11/ 4 ここで,m→∞のときn→∞となる。 (1) k ≥1/12+1 ① とする。 無限級数 阻 解答 [1] n=1のとき k=1k 1/2=1+1/2=1/1/3+1 よって, ① は成り立つ。 +1 [2]n=m(m は自然数)のとき,①が成り立つと仮定すると100+ このとき 2 11+1 k=1 k (+1)+2+1 2m+1 k=2m+1 k 1 1 + ++ 2m+2 2m+1 > m2m2 1 1 +1+ + ++ 2m+1 2m+2. 2m+2m_ 1 m+1 +1+ .2m= +1 2m+1 2 よって, n=m+1のときにも ① は成り立つ。 1 12m+1=2m2=2"+2" 1 1 2m+1 2+2+2 (2+) 2m+k (k=1, 2,., 2-1) [1] [2] から, すべての自然数nについて①は成り立つ。 (2)S=2とおく。 n≧2" とすると, (1) から k=1 k m m Sn≥ +1 ここで,m→∞のときn→∞ で lim (7/27 +1)=0 .. limSn=∞ m-oo 8012 したがっては発散する。 an≦bnでliman=∞⇒limbn=∞ (p.343②) 72-00 12-00 n=1n 重45の結果を開いて、無限級数学は発散 0 (2)より、 m を示したい 同様に n Th=8とおく。≧とすると、 k=1 12/2計++言を計計+2より 2m m Th≥ 8 +1 : lin Th=00 " 題意は示された

未解決 回答数: 1
数学 高校生

左のページは絶対値取らないでも計算できますが,右ページは場合分けする必要があるっていうのの理由を知りたいです。どういう場合に場合分けをしなければいけないかは把握してます

73 00000 (2) x-2<0 -1<0-1≥0 X-2≥0 72 基本 40 絶対値を含む方程式 次の方程式・不等式を解け。 (1)|x-1|=2 (2)|2-3x|=4 (3)|x-2|<3 指針 ただし,(1)~(4)の右辺はすべて正の定数であるから, 絶対値記号を含むときは、場合分けをして、絶対値 記号をはずして考えるのが基本である。 |A|= 次のことを利用して解くとよい。 >0 のとき 方程式|x|=cの解はx=±c -c<x<c 不等式|x|<c の解は 不等式|x|>c の解は x<-c, c<x (1)|x-1|=2から x-1=±2 x1=2 または x1=-2 x=3,-1 (4)基本 A 11=1_^ -A 例題 41 絶対値を含む方程式 P.63 次の方程式を解け。 (1) x-2|=3x (2)|x-1|+|x-2|=x AKO 絶対値記号を場合分けしてはずすことを考える。 それには, |x-1=Xとおくと |XI=2 よって X=±2 | (2) |2-3x|=|3x-2 であるから, 方程式は 3x-2|=412-3x=4から 2-3x=±4 としてもよいが、 |= {_^ |A|= -A (A≧0 のとき) (A < 0 のとき) であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち | 内の式 =0の値である。 (1)x2≧0x20, すなわち, x≧2とx<2の場合に分ける。 (2) 2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1 2 であるから,x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 (1)[1] 章 19 2 x 場合の分かれ目 41次不等式 解答 すなわち よって ゆえに 3x2=±4 答 すなわち 3x2=4 または 3x2=-4 |-4|=|A|を利用 のとき, 方程式は x-2=3x これを解いて x=-1 x=-1 は x2を満たさ ない。 よって (3)|x-2|<3から x=2, -2 の係数を正の数に [2] x<2のとき, 方程式は -(x-2)=3x 1 3 -3<x-2<3 (3),(4)x2=Xと おくと解きやすくな これを解いて x= 2 x= は x<2を満たす。 2 重要! 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないかを 必ずチェックすること (解答の の部分)。 1 各辺に2を加えて -1<x<5 |X|<3から [1], [2] から, 求める解は x= (4)|x-2|>3から x-2<-3, 3<x-2 -3<X<3 したがって x<-1, 5<x |X|>3から 最後に解をまとめておく。 -2x+3=x X<-3, 3<X これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 - をつけてをはず す。 x-1≧0, x-2 < 0 x=1は1≦x<2を満たす。 (x-1)+(x-2)=x <x-1>0, x-2≧0 2 (2)[1] x<1のとき,方程式は (x-1)(x-2)=xx-1<0,x-2<0→ すなわち 絶対値を数直線上の距離ととらえる |b-alは,数直線上の2点A(a),B(b)間の距離を表しているから, x-2は数直線」 座標が2である点と点P(x) の距離ととらえることができる。 よって、(3),(4)の不等 満たすxの値の範囲は、下の図のように表すことができる。 |x-21=3 x-21>3 \x-21=3 [3] 2≦xのとき, 方程式は 2x-3=x すなわち これを解いて x=3 以上から、 求める解は y=x-21のグラスと方程式 x=3は2≦xを満たす。 x=1, 3 最後に解をまとめておく。

未解決 回答数: 1
数学 高校生

解説お願いします。 黄色マーカー以前までは理解出来たのですが、黄色マーカーから紫マーカーへの流れがよく分からないです。 教えていただけると嬉しいです。 よろしくお願いします。

第1講 確率と漸化式 1 図のように、正三角形を9つの部屋に辺で区切り,部屋 P, Q を定める。 1つの球が部屋Pを出発し, 1秒ごとに,そのままそ の部屋にとどまることなく, 辺を共有する隣の部屋に等確率で 移動する. 球がn 秒後に部屋 Q にある確率を求めよ. P Q 《12 東大理科文科》 【著】3(金) 11- (nが偶数のとき) (nが奇数のとき) 【解説】 右図の様に P と Q 以外の部屋を定める. 最初に球はPの部屋にあることより, nが奇数のときには球はP,Q, R以外の部屋にあり, nが偶数のときには球はP,Q,R のどこかの部屋 にある. 以下を偶数とする. m+2秒後にQ の部屋に球があるのは 1 (I) m秒後にPにあり,確率 3 でAに移動して、確率 1/12 で Q に移動する. 1 (II) m秒後にQにあり,確率 でAに移動して、確率 1/12 でQに移動する。 3 1 (III) m秒後にQにあり,確率 でBに移動して,確率1でQ に移動する. 3 1 A R Q B (IV) m秒後にQにあり,確率 でCに移動して、確率 1/2でQに移動する。 3 (V) m秒後にRにあり、確率 1/3でCに移動して、確率 1/1 -で Q に移動する. の5つの場合だけ考えればよいので, n秒後にP,Q,R にある確率をそれぞれ Pn, Qn, Rn とすると, Qmtz=Pmx/1/31/1/2+Qmx1/2×1/28+Qmx/3×1+Q×1/2×1/2+Rmx/1/3×1/2 6 Qmtz=2/12 (Pa+Rm)+/Qm 2 3 が成り立つ。ここでPm+Qm+Rm=1よりPm+Rm=1-Qm を代入すると Qm+2=1/03(1-Qm)+/30m 6 ⇔ Qm+2= Qm + 2 == 1 | Qm + 1/14 2 6 ⇔ Qm Qm+2- + 2 − 1 = 1 ½ (Qm −1 ) ---① dm - 3 2 となり,最初球がPにあることよりQ = 0 と定めることができるので,Q=0と① より Q2n = {1-(2)"}

解決済み 回答数: 1
数学 高校生

(1)の問題で、なぜ2p,2p-1 となるのかがわかりませんでした。解き方を、理由含めて教えてもらえると嬉しいです。

例題 58 (2) 12299500 Gas ピタゴラス数の証明 ★★★☆ (1) αを自然数とするとき, αを4で割ったときの余りは0か1であるこ とを示せ (2)1,m,nを自然数とする。 +mmならば,L,mのうち少なくと も1つは2の倍数であることを証明せよ。 結論 向 RoAction 余りに関する証明は、余りによる分類 (剰余類)を利用せよ 例題56 (2)条件の言い換え (ア)だけが2の倍数 1(d) 問題編 5 46 ☆☆☆☆ 47 ★☆☆☆ 次の (1) (2) 次①② 思考プロセス 「結論」 Actiser P ( だけが2の倍数 (ウ), ともに2の倍数 3つの場合があり《Goit 証明しにくい Action» 「少なくとも~」の証明は,背理法を利用せよ 解 (1) 自然数αは2で割った余りに着目すると, 2p 2p-1 56 (自然)のいずれかで表すことができる。 (ア) α = 2p のとき a2= (2D)2=4p2 は自然数であるから, は整数である。(1 よって, d' を4で割った余りは0である。 4で割ったときの余りで 分類してもよいが, 2で 割ったときの余りで場合 分けして考えても うま 4でくることができ る。 (イ)a=2p-1 のとき a² = (2p-1)² = 4(p² − p) +1 は自然数であるから, は整数である。(= よって, d を4で割った余りは1である。 (ア)(イ)より, d を4で割ったときの余りは0か1である。 (2) l, mがともに2の倍数でないと仮定すると e) = M 48 ☆★☆☆ 49 ★★

未解決 回答数: 1
数学 高校生

(2)の問題で、なぜこのようにnを3で割ったときの場合分けをするのか、分かりませんでした。解き方の理由を含めて教えてください。

解 思考プロセス 例題 57 倍数であることの証明 nが整数であるとき, 次のことを証明せよ。 (1)nnは6の倍数である。 逆向きに考える 6 の倍数であることを示すためには? (2) (a) 6 × ( の形になる この とするか? (2)23+3m²+nは6の倍数であるこ (b) 連続する3つの整数の積である (C)「2の倍数」 かつ 「3の倍数」 である moin 201 (D) いずれかを示す。 Action» 連続する 個の整数の積は, m! の倍数であることを利用せよ (1)n-n=n(n-1)=(n-1)n(n+1) (n-1)n(n+1)は連続する3つの整数の積であり,この 3つの整数の中には、2の倍数, 3の倍数がそれぞれ少な <くとも1つ含まれるから 6の倍数である。 よって、n-nは6の倍数である。 (2) N = 2n+3n2+n とおくと N = n(2n²+3n+1)=n(n+1)(2n+1) ( 与えられた式3-nを因 A 数分解する。 一般に、連続する”個の 一般に, 連続する個の 整数の積はm! の倍数と なる。 2 == n(n+1) は連続する2つの整数の積であり,n, n+1の いずれかは2の倍数であるから, Nも2の倍数である。 例題 次に 56 (ア)n=3k(kは整数) のとき N = 3k(3k+1)(6k+1) (イ)n = 3 +1(kは整数)のとき I+(4-8) N=(3k+1)(3k+2)6k+3)=3(3k+1)(3k+2) (2k+1 (ウ) n=3k+2 (kは整数) のとき N=(3k+2) (3k+3)(6k+5)=3(3k+2)(k+1)(6k+5) んは整数であるから、(ア)~(ウ)のいずれの場合も N は3 の倍数となる。 したがって, 2n+3n+nは6の倍数である。 nを3で割ったときの余 りで場合分けして考える。 一類す こと

未解決 回答数: 1
1/1000