学年

質問の種類

数学 高校生

どうして②が実数解をもつことがtの範囲につながるんですか??

腰例題 122 2変数関数の最大・最小 (4) xyがx+y=2を満たすとき, 2x +yのとりうる値の最大値と最小値を一 よ。また、そのときのx, yの値を求めよ。 [類 南山大〕 基本101 条件式は文字を減らす方針でいきたいが、条件式x'+y=2から文 字を減らしても, 2x+yはx,yについての1次式であるからうま くいかない。 そこで,2x+y=tとおき, tのとりうる値の範囲を調べることで, 最大値と最小値を求める。 →2x+y=t を y=t-2x と変形し, x2+y2=2に代入して」を消 去するとx2+ (t-2x) =2となり, xの2次方程式になる。 xは実数であるから,この方程式が実数解をもつ条件を利用する。 実数解をもつ⇔D≧0 の利用。 CHART 最大・最小 = t とおいて,実数解をもつ条件利用 見方をか 八える 203 2x+y=t とおくと y=t-2x ① これをx2+y2=2に代入すると x2+(t-2x)2=2 整理すると 5x2 -4tx+t2-2=0 ...... このxについての2次方程式② が実数解をもつための 条件は、②の判別式をDとすると D≧0 D ここで =(-2t)2-5(2-2)=-(2-10) 4 参考 実数a, b, x, y に ついて,次の不等式が成り 立つ(コーシー・シュワル ツの不等式)。 (ax+by)(a+b²)(x²+y²) [等号成立は ay=bx] この不等式にα=2,6=1 を代入することで解くこと もできる。 D≧0 から t2-10≤0 これを解いて -√10 ≤t≤√10 ✓もの範囲! -4t_2t t=±√10 のとき,D=0で,②は重解x=- 2.5 を 5 のとき, ② は ±√10 もつ。=±√10 のとき 2/10 x=± 5 ①から √10 y=± (複号同順) 5 よって 210 10 x= y= のとき最大値 10 5 x=- 2/10 5 10 y=- のとき最小値10 5x2 +4√10x+8=0 よって (√5x=2√2) 20 ゆえに x=± 2√2 2√10 √√5 ・=土・ √10 ① から y=± 5 (複号同順) 5 5 としてもよい。

解決済み 回答数: 1
数学 高校生

(2)の問題ではどうして線で引いたところをしめすと最終的にxとy、最小値がでているのか理解できません。どうしてなのか教えてください。

66 第3章 2次関数 基礎問 ● 38 最大 最小 (IV) x, yがすべての実数値をとるとき, z=x2-2.xy+2y2+2.4g+3 について,次の問いに答えよ. (1)yを定数と考えて, xを動かしたときの最小値mをyで表せ (2)(1)のmにおいて,yを動かしたときの最小値を考えることで、 精講 zの最小値とそのときのx,yの値を求めよ. 変数が2つ(xとy)ありますが,37のように文字を減らすこと できません.このような場合でも,変数が独立に動くならば、 の文字を定数と考えることによって, 最大値や最小値を求められます。 解答 (1) z=x2-2(y-1)x+2y2-4y+3 ={x-(y-1)}2-(y-1)2+2y2-4y+3 ={x-(y-1)}2+y^-2y+2 よって,m=y2-2y+2 ●式をxについて整理 ●平方完成 Rayをab.cと同じにする 39 最 △ABO 上にAI 垂線 DE (1) 長方 (2) Sの 長 精講 V (1) AI .. ま ま (2)m=y-2y+2=(y-1)+1 .z={x_(y-1)}2+(y-1)2+1 {x-y-1)}2≧0, (y-1)2 ≧0 だから -(y-1)=0 かつ, y = 1, すなわち A,Bが実数のとき A2+B2≧0 等号は A=B=0 (2) DE S= x = 0, y=1のとき, 最小値1をとる. のとき成りたつ ポイ ② ポイント 2変数の関数の最大・最小を求めるとき,それらが 立に動くならば、片方を定数と考えてよい ※定数・一定の数y=ax+bx+cにおけるa,b,c 演習問題 38 x, y がすべての実数値をとるとき, 32+2xy+y+4x-Aut 演習問題 39

未解決 回答数: 1
数学 高校生

解答を読んでも分からなかったので教えて欲しいです

** 基本例題 90 平均値の定理を利用した不等式の証明 「平均値の定理を用いて, 次のことを証明せよ。 X / <a<b<1のときa-b<blogb-aloga<b-a 平均値の定理の式は 指針 b-a f(b)-f(a)=f(c) (a<c<b) ① 一方,証明すべき不等式の各辺をb-a ( > 0) で割ると blogb-aloga -1< <1 b-a 基本 89 重要 91 ② ① ②を比較すると,f(x)=xlogx(a≦x≦b)において, -1<f (c) <1 を示せばよい ことがわかる。このように,差f(b)-f(a) を含む不等式の証明には、平均値の 定理を活用するとよい。 ..... CHART 差f (b)-f(α) を含む不等式 平均値の定理も有効 関数f(x)=xlogxは, x>0で微分可能で x>0で微分可能である 解答 f'(x)=logx+1 から,x>0で連続。 よって、区間 [α, 6] において,平均値の定理を用いると blogb-aloga b-a =logc+1, a<c<b <指針」 の方針。 を満たすc が存在する。 f(b)-f(a) を含む不 等式については,平均値 の定理を意識しよう。 // <a<b<1とa<c<bから e2 11/4 <c<1 e2 各辺の自然対数をとって logy <logc<log1 e² すなわち −2<logc<0 この不等式の各辺に1を加えて なお, 2変数の不等式の 扱いについて, p.200 で まとめている。 g1/2=10ge^2=2, log log1=0 −1<logc+1<1 よって -1< blogb-aloga b-a <1 この不等式の各辺にb-α(0) を掛けて a-b<blogb-aloga<b-a <a<bであるから b-a>0

回答募集中 回答数: 0
数学 高校生

Pの範囲を求める時に1文字消去してやっても良いでしょうか? x=p-y (p-y)^2+(p-y)y+y^2=1 y^2-py+p^2-1=0 この判別式DがD≧0より D=p^2-4p^2+4≧0 よって... 同じ範囲は出るのですが、これで良いでしょうか?... 続きを読む

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0
数学 高校生

Pの範囲を求める時に1文字消去してやると間違うのですが、何故なのでしょうか。 x=p-y (p-y)^2+(p-y)y+y^2=1 この判別式DがD≧0より -2≦p≦2

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0
数学 高校生

Pの範囲を求める時に2枚目の写真のように1文字消去してやると間違うのですが、何故なのでしょうか。

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0
数学 高校生

数学3についてです 解説を見てもよくわかりません この問題を見てどう考えたらこの解説のような解法を思いつくのでしょうか わかる方おねがいします

基本 例題 90 平均値の定理を利用した不等式の証明 平均値の定理を用いて,次のことを証明せよ。 e² 1/2 <a<b<1のときa-b<blogb-aloga<b-a ・基本 89 重要 91 平均値の定理の式は 指針 f(b)-f(a) b-a -=f'(c) (a<c<b) ① 一方, 証明すべき不等式の各辺を6-α (>0) で割ると blogb-aloga -1- <1 b-a ① ② を比較すると, f(x)=xlogx (a≦x≦b)において, -1<f(c) <1 を示せばよい ことがわかる。このように,差f(b)-f(a)を含む不等式の証明には,平均値の 定理を活用するとよい。 ★ CHART 差f (b)-f(α) を含む不等式 平均値の定理も有効 関数f(x)=xlog x は, x>0で微分可能で x>0で微分可能である 解答 f'(x) =logx+1 から,x>0で連続。 よって, 区間[α, b] において,平均値の定理を用いると blogb-aloga b-a 指針 ★の方針。 =logc+1, a<c<b を満たすc が存在する。 ・<a<b<1とa<c <bから 1/1/2 <<1 e2 各辺の自然対数をとって log <logc<log 1 e2 1 すなわち −2<logc<0 log この不等式の各辺に1を加えて f(b)-f(a) を含む不 等式については,平均値 の定理を意識しよう。 なお, 2変数の不等式の 扱いについて, p.200 で まとめている。 11/2=loge^2=-2. log1=0 −1<logc+1<1 blogb-alog@<1 よって -1< b-a この不等式の各辺に bα (0) を掛けて a-b<blogb-aloga<b-a <a<bであるから ba>0

解決済み 回答数: 1
1/32