学年

質問の種類

数学 高校生

2の(3)の解説に線を引いた部分がわからないです

実 擬力 Date k=2が2直 テスト2 2次 2 13 ①と問題を比較をして, a, b, c, 2+ 4+ 13 dの値を探しましょう. 1 1 1 1 a+ 2+ 1 2+ ⑥ + 1 1 1 4+ C+ 3 d 以上より 傾きを求めて y=ax+b に代入 y切片を求めて完成してもよい 点A(-3, 9), C (4, 16) を通 (4,16) る直線 C y-9=- 9-16 -3-4 {x-(-3)}より A (-3, 9) B(1,1) y=x+12 0 a=2,b=2,c=4,d=3 となります。 点B(1, 1), 点C (4, 16) を通る ② x = 2 答え: α = 2,6= 2,c=4,d=3 直線 y-1= 1-16 1-4 (x-1)よりy= 5x-4 2 解答・解説 2 右図の斜線部分に含まれる点 (x,y)でx,yともに整数となる ものについて考える。 周上の点 も含むと考え、次の問いに答え なさい。 y=x2 (4, 16 A 今回の題意からx, yが共に整数であることを踏まえて, x=2の直線 上にあるyの値に着目します (図の赤い部分). すなわち "x=2と直 ②の交点”以上 "x=2と直線の交点” 以下にあるyの整数値の 個数より 5×2-4≦y≦2+12 ②にx=2を代入 ①にx=2を代入 これより6≦y≦14 (-3, 9) B(1, 0 この範囲でyの値が整数になるのは y=6,7,8,9,10,11,12,13, 14の合計9個. (2)直線上には何個ありますか。 ◆解答・解説◆ (2) 地道に数えていくのも1つの方法ですが、今回は計算で解いてみま (3) 斜線部分内には何個ありますか。 す.x=2が2直線と交わるのでその交点のy座標に着目します。 2点(x1,y1)(x2,y2)を通る直線の求め方は y-y1= y-y2 -(x-x1) X1-X2 で求められる. ので、 05 ◆解答・解説 答え: 9個 (3)(2)の解き方を応用して x=-3からx=4までについて」が整数値 をとる個数を計算で出してみましょう. A(-3, 9),B(1,1) 84 85

回答募集中 回答数: 0
化学 高校生

この2つの問題で、後者の問題はなぜ、前者の問題のように解けないのですか?聞いてることは同じようなことにしか思えません。教えてくださる方いませんか

方を優先 考える。 ◎高位は0以外である。 一の位は奇数である。 一の位は0である。 十の位の順に場合に 考える。 の出し、取り出 の問いに答えよ るか。 395 一般] p.26 例4 委員の3人を兼任 396 p.26 例題 4 397. (1) 男子と女子が交互に並ぶとき, 男女の並び方は, 男女男女 男子は奇数番目 女子は偶数 男女男女男の1通りである。 男子5人の並び方は 5P5通りある。 番目に定まる。 そのそれぞれに対して, 女子4人の並び方が4P4 通りずつある。 よって 求める並び方の総数は積の法則により sPsxF=5・4・3・2・1×4・3・2・12880 (通り) (2) 女子4人を1人とみなして6人が並ぶと考えると, その並び方 隣り合うものは1つにまとめ は6P6通りある。 て考える。 れぞれに対して, 女子4人の並び方は 4 P4 通りずつある。 よって、求める並び方の総数は積の法則により P6×4P4=6・5・4・3・2・1×4・3・2・1=17280 (通り) (3) 両端の女子の並び方が 4P 2通りある。 そのそれぞれに対して、残りの7人の並び方がP7通りずつあ る。 よって、求める並び方の総数は積の法則により, 4P2X7P7=4・3×7・6・5・4・3・2・160480 (通り) (4) まず男子5人が並び、その間と両端の6か所から4か所を選ん で女子が並ぶと考えると, 求める並び方の総数は積の法則によ り, sPs×6P4=5・4・3・2・1×6・5・4・343200 (通り) (2) 0000口 (67) #! □ 女子が両端にくる。 71619 AADA 397 男子5人、女子4人が1列に並ぶとき,次のような並び方は何通りあ 全員が運転できる。 (1人) 4人) 男子と女子が交互に並ぶ。 女子4人が続いて並ぶ。一 女子のどの2人も隣り合わない。 数:27 例題 5 残り 6人 男から先に 考えて 1人1人 2台) 制限のある両端の並び方を優 先して考える。 hokka 先に男子が並び、その間と両 端の6か所から4か所を選ん で女子が並ぶと考える。 0狙えらではなん (( ) [___¶- -) 1000 398 8人が5人乗りと4人乗りの2台に分乗して旅行をする。座る位置 区別するとき、次の場合に何通りの座り方があるか。 f 3人だけが運転できる。 1608 → 第6章 第6章

回答募集中 回答数: 0
数学 高校生

(3)の質問です。 2200=〜(k≧5)までは分かりました。 そこからk=5を試せませんでした。どう試そうと思うのですか? またk^3の位に注目して〜のところでは、例えばk=6のとき、5k^3は2200より小さくなると思うのですが、なぜこの不等式が成り立つのですか? ... 続きを読む

第2問~第4問は,いずれか2問を選択し、 解答しなさい。 第3問 (選択問題(配点20) 自然数Nを7進法で表すと3桁の数 abc (7) となり, 8進法で表すと3桁の数 cba(s) になるとする。 (1) このような自然数Nを求めよう。 a, b, c について が成り立つ。 変形すると アイla-b- アイ b= a= と オ ウエ c=0 ウエ の最大公約数は カキ a- クケ となる。よって, 条件を満たす α, b,c は b= サ である。 したがって,Nを10進法で表すと, N = C= オ スセソ であるから、この等式を である。 (数学Ⅰ・数学A 第3問は次ページに続く。 (2) Nを5進法で表すと, タチツテ である。 (5) (3) 10N を進法で表すと, 4230(k) となった。 このとき, ト k= となる。 (4) 10Nの正の約数は全部でナニ個ある。 これらのうち, 2の倍数はヌネ 個, 4の倍数はノハ 個 8の倍数は ヒ 1個ある。 したがって10N のすべての正の約数の積を2進法で表すと,末尾には 0 が連続 して フへ 個並ぶ。 LE

回答募集中 回答数: 0
1/7