学年

質問の種類

数学 高校生

最後の青い()のところで、右に書いてある感じで、係数を比較して答えを出すのは減点されますか? x=0とかπ/2とかを代入して計算するやり方でないとだめですか?

基本 例題 156 第2次導関数と等式 (1) y=log(1+cosx) のとき, 等式 y"+2e-1=0 を証明せよ。 |(2) y=ezsinxに 267 00000 に対して,y"=ay+by' となるような定数a,bの値を求めよ。 [(1) 信州大, (2) 駒澤大] 基本 155 指針第2次導関数y” を求めるには,まず導関数y' を求める。 また, 1), (2) の等式はともに 解答 x の恒等式である。 (1) y” を求めて証明したい式の左辺に代入する。 また,er をxで表すには, 等式 elog = pを利用する。 (2) y, y” を求めて与式に代入し、 数値代入法を用いる。 y=2log(1+cosx) であるから (1+cosx). 2sinx y'=2. 1+cosx よって y"=- 1+cost 2{cosx(1+cosx)−sinx(−sinx)} (1+cosxnia 2(1+cosx) (1+cosx) 2 1+cosx ex=1+cosx また, // = log(1+cosx) であるから 2 log M = klogM なお, -1≦cosx≦1と (真数) > 0 から 1+cosx>0 sinx+cos2x=1 [0] elogp=pを利用すると elog(1+cosx)=1+cosx 5章 22 2 高次導関数関数のいろいろな表し方と導関数 ゆえに よって 2e-= 2 2 y 1+cosx e2 y"+2e-=-- 2 + 2=0 1+cosx 1+cosx (2) y=2e*sinx+ecosx=ex(2sinx+cosx) y=2e2(2sinx+cosx)+e(2cosx−sinx) =e2x(3sinx+4cosx) ゆえに ...... ay+by'=aesinx+be2x(2sinx+cosx) =e2x{(a+26)sinx+bcosx} y=ay+by' に ①,②を代入して中 e2x \(e2*)(2sinx+cosx) 1 | +e(2sinx+cosx) (S (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} ... ③ ③はxの恒等式であるから, x=0 を代入して 4=b 参考 (2) y=ay+by' の ように、未知の関数の導関数 を含む等式を微分方程式と いう(詳しくは p.473 参照)。 ③が恒等式⇒③にx=0, また,x=を代入して 3e=e" (a+26) これを解いて a=-5,6=4 このとき 2 を代入しても成り立つ。 (③の右辺)=ex{(-5+2・4)sinx+4cosx}=(③の左辺) 逆の確認。 したがって a=-5, 6=4 係数を比較して、 a+26=3. よって 4:6. a:-5. (1)y=log(x+√x+1)のとき,等式(x+10y+xy=0 を証明せよ。 156 (2)yee yayby=0を満たすとぎ 定数a,bの値を求めよ。 [(1) 首都大東京, (2) 大阪工大] p.275 EX131~133 airy.

解決済み 回答数: 2
数学 高校生

(2)教えて欲しいです 解説がうまく理解できなくて、

Zs=8 =k y y=mx 2 y=x 境界は除く)のようになる。 て対称であり、図の斜線部分 yi m Dm に含まれる (k, k2+2), (1) -, (k, mk) とすると -1) -1 TL [解説] an=a+(anti-an) =1+4k=1+4.(n-1)n =2n2-2n+1 2 格子点の個数を,(2)の誘導に従い, 階 数列を求めることで,計算した. 83と比 してみよう。 78 [解答1] (1) 3 x (2) 上の図のようになるから a1=1, a2=5, a3=13 YA n+1 n (1, n-1) (n-1,1) 'n+1 x 解答 P A a T A(0, α) とし,円とPの接点を T(t, t2) (t≠0) とする. x +(m+1) +1)+6} 2) を利用 -n-1 -n -n -n- n an+1 -αn は, 領域|x|+|y|< n +1 に含 まれ, 領域 |x|+|y|<n に含まれない格子 点の個数であり,それは,正方形 |x|+|y|=n上にある格子点の個数である. 正方形 |x|+|y|=n上の格子点のうち, 第1象限 x>0, y>0 に含まれるものは (1, n-1), (2-2),..., (n-1, 1) の n-1 個. y=x2 から y'=2x なので, TにおけるPの接線をひとす [Zの傾き〕=2t t²-a t²-a 〔直線AT の傾き〕= t-0 t Aを中心とする円がTにおいて る条件は ATZ ① ② ③ から t t-a.2t=-1 よって,a/1/2 であり ...① 小 よって, 対称性から, 正方形|x|+ly|=n 上の格子点のうち, 座標軸上にないものの個 t=± a とき, 数は ゆえに -y) 4(n-1) 1 これに、座標軸上の4点を加えて, r2=AT2=(t-0)2+(t2_ 2

回答募集中 回答数: 0
生物 高校生

今日の同志社の生物です 全く分からなかったんで解説してほしいです!

j (7) 下線部 (d) に関する次の文章を読み、以下の問い ①と②に答えよ。 「ごリボソームで合成されたタンパク質は、複数種のシャペロンのはた らきにより正しい立体構造が形成される。 ① シャペロンにより正しい立体構造を形成する過程は何と呼ばれる か, 名称を答えよ。 修復 (2) シャペロンの機能について説明した以下の選択肢(A)~(E) の中で、誤っているものを二つ選び,記号で答えよ。 (A)合成されたタンパク質の立体構造形成を助ける。 (B) 誤って折りたたまれたタンパク質をほどき,修復する。 (C) 誤って合成されたタンパク質のアミノ酸配列を修復する。 積極的にエンドサイトーシスを起こし、細胞外に存在する凝 集したタンパク質の修復を行う。 首都大/(F) リボソームで合成された後のタンパク質に結合し, 凝集を防 の ぐ。 大 内灯辛味 (8) 下線部 (d) に関する次の文章を読み, 空欄 (ア)にあてはまる適 切な語句を答えよ。 また, (ア) が形成される細胞小器官の名称を答 えよ。 も 真核生物のタンパク質分解の制御として, ユビキチン・プロテアソ ーム系とオートファジー (自食作用)が知られている。ユビキチン・ プロテアソーム系では、ユビキチンタンパク質で標識された不要なタ ンパク質をプロテアソームが選択的に分解する。 一方,オートファジ には分解酵素を含んだ (ア)がはたらき, タンパク質を分解す 温酸化棒 リソソーム る。 37 " qu eek マ

回答募集中 回答数: 0
数学 高校生

赤戦で囲った部分 どうしてπ/2を代入するのか分からないです

+1) 求めよ。 1. 基本 65 では 3)', 74 第2次導関数と等式 v=log(1+cosx) のとき,等式 y” +2e-x=0を証明せよ。 ((1) y= (2) y=esinx に対して, y" = ay+by' となるような実数の定数 α, bの値を求 2x, めよ。 指針 第2次導関数y" を求めるには,まず導関数yを求める。 また, (1), (2) の等式はとも にの恒等式である。 [(1) 信州大, (2) 駒澤大] 基本73 解答 例題 基本的 (1)y" を求めて証明したい式の左辺に代入する。 e xで表すには、等式 elogp=カを利用する。 (2)y',y" を求めて与式に代入し, 数値代入法を用いる。 なお,係数比較法を利用す → ることもできる。 →解答編 p.94 の検討 参照。 (1) y=2log(1+cosx) であるから (1+cos x)' y'=2. 1+cosx 2{cos x(1+cos x)-sinx(-sinx)} (1+cos x)² 32 1+cos x よって y"= 2(1+cosx) (1+cos x)² また, //=log(1+cosx) であるからex=1+cosx 2 ゆえに 1+cosx 2e = 2 est y" +2e=2=-- = また, x= 2 2 よって 1+cosx 1+cosx (2) y'=2e²x sinx+e²x cos x=e²x (2 sinx+cosx) y”=2e2(2sinx+cosx)+e2(2cosx-sinx) 2sinx 1+cosx =e2x(3sinx+4cosx) ゆえに ay+by' = aesinx+be2x (2sinx+cosx) ...... + を代入して ① =e2x{(a+26)sinx+bcosx} =0 y" = ay+by に ① ② を代入して e2x (3sinx + 4cosx)=e^x{(a+2b)sinx+bcosx} ③はxの恒等式であるから, x=0を代入して π 3e=e¹(a+2b) (3) 4=b ... <log M = klog M なお, -1≦cosx≦1と (真数)>0 から 1+cosx>0 Az el sin²x+cos2x=1 elogp=pを利用すると elog(1+cosx)=1+cosx 4(e2*)(2sinx+cosx) +ex (2 sinx+cos.x)' 131 【参考】 (2) のy"=ay+by のように、未知の関数の 導関数を含む等式を微分 方程式という (詳しくは p.353 参照)。 1③が恒等式③に x=0,177 を代入しても 成り立つ。 これを解いて a=-5,6=4 このとき (③の右辺) =e2x{(-5+2・4)sinx+4cosx}=(③の左辺)逆の確認。 したがって a=-5, 6=4 2017AB DE 2 [9] JO (1) y=log(x+√x+1)のとき,等式(x+1)y"+xy'=0 を証明せよ。 ③74 (2) y=e2x+exy"+ay' + by = 0 を満たすとき,定数a, bの値を求めよ。 [(1) 首都大東京, (2) 大阪工大】 p.139 EX67~69 3章 ⑩ 高次導関数関数のいろいろな表し方と導関数 11

解決済み 回答数: 1
1/7