学年

質問の種類

数学 高校生

数Aです (3)の3の4乗通りの意味が納得できないので、教えてください

364 基本 21 組分けの問題 (1) ... 重複順列 47 6枚のカード1,2,3,4,5,6 がある。 00000 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。ただし、各種 少なくとも1枚は入るものとする。 (2) 6枚のカードを2組に分ける方法は何通りあるか。 6枚のカードを区別できない3個の箱に分けるとき、 カード 1.2を 箱に入れる方法は何通りあるか。 ただし, 空の箱はないものとする。 指針 (1)6枚のカードおのおのの分け方は, A. Bの2通り。 - 重複順列で 通り ただし、どちらの組にも1枚は入れるから。 全部を AまたはBに入れる場合を除くために (2) (1) A,Bの区別をなくすために (3) A. B. C とし、問題の条件を表に示すと、 右のようになる。 よって、次のように計算する。 (34.56. B. Cに分ける) カー 3.4.5.6から少なくとも Cが空箱になる=3. 4. 5. 6をAとBのみに入れる) CHART 組分けの問題 個の組と組の区別の有無に注意 (1)6枚のカードを, A. B2つの組のどちらかに入れる方 解答 法は 264通り このうち, A. Bの一方だけに入れる方法は2通り よって、八組Bに分ける方法は 61-262(通り) (2)(1) A,Bの区別をなくして 62÷2=31(通り) -(A, B (3) カード 1,カード2が入る箱を、それぞれA,Bとし、 残りの箱をCとする。 A,B,Cの3個の箱のどれかにカード3. 4. 5. 6を入 れる方法は が通り が入 入る 意 このうち、Cには1枚も入れない方法はり したがって 3-2'=81-16=65 (通り) できるように C2224 A, B02 2570 0 21 (1)7人を2つの部屋A, Bに分けるとき。 どの部屋も1人以上になる分け方

未解決 回答数: 1
数学 高校生

これの⑶ほんとに意味わかんないです、、 教えてくださいー😭

364 基本例題 21 組分けの問題 ( 1 ) 6枚のカード1,2,3,4,5,6がある。歌 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。 ただし,各組に 少なくとも1枚は入るものとする。さび (2) 6枚のカードを2組に分ける方法は何通りあるか。 基本20 (3) 6枚のカードを区別できない3個の箱に分けるとき, カード1,2を別々の 箱に入れる方法は何通りあるか。ただし,空の箱はないものとする。 指針 重複順列 → (1) 6枚のカードおのおのの分け方は, A,Bの2通り。 重複順列で 2通り ただし、どちらの組にも1枚は入れるから, 全部を A またはBに入れる場合を除くために -2 (2) (1) で, A,Bの区別をなくすために ÷2 (3) 3個の箱をA, B, C とし, 問題の条件を表に示すと, 右のようになる。 よって,次のように計算する。 (3,456 を A, B, C に分ける) (Cが空箱になる = 34,56をAとBのみに入れる) CHART 組分けの問題 0個の組と組の区別の有無に注意 このうち, A,Bの一方だけに入れる方法は 2通り よって, 組 A と組Bに分ける方法は 64-262 (通り) (2) (1) A,Bの区別をなくして 1 2 3 4 ↑ ↑ ↑ A A or or B B (1) 6枚のカードを,A,B2つの組のどちらかに入れる方 | A,Bの2個から6個取 解答 法は 2664 (通り) る重複順列の総数。 24通り AAA or or or or BBB B 3,4,5,6から少なくとも1枚- 練習 (1) 7人を2つの部屋 A,Bに分けるとき,どの部屋も1 ③ 21 望を 箱 カード A B C 1 2 62÷2=31 (通り) (3) カード1, カード2が入る箱を,それぞれA,Bとし, (3) 問題文に「区別できな 残りの箱をCとする。 A,B,Cの3個の箱のどれかにカード 3,4,5,6を入 れる方法は 34通り い」とあっても、カード 1が入る箱, カード2が 入る箱,残りの箱,と区 別できるようになる。 Cが空となる入れ方は, このうち,Cには1枚も入れない方法は したがって 3-24=81-16=65 (通り) A,Bの2個から4個取 る重複順列の総数と考え て 24通り (2組の分け方) ×2! =(A,B2組の分け方) L△

回答募集中 回答数: 0
1/15