学年

質問の種類

数学 中学生

二次関数の変域の問題です。1.2.3について詳しく解説してくれると嬉しいです。

の変域 の変域 ン。 (2) とき) なるこ つうち, 負から正に変わっているので、yの変域は0以上または0以下となる。 また by 18よりyの変域は0以上で,a>0 とわかる。よって,b=0 一方、xの変域の両端の値のうち、絶対値の大きなx=3がy=18と対応するので,y=arにそれ ぞれ代入し, a=2と求まる。 答 a=2,b=0 中3で習う分野 問題 (解 mnを整数とする。関数y=axについて,xの変域がm≦x≦nのとき,yの変 0≦y2である。 m, nの値の組は全部で何通りありますか。 y=1/2xにおいて,yの値が2となるときのxの値は,y=2 を代入して, 2=1/2x2 よって、x=±2 (都立新宿高) 一方,比例定数は正で,yの変域が0以上ということを考えると,mは0以下で絶対値が2以下の 整数,nは0以上で絶対値が2以下の整数,さらにm,nのどちらか一方の値は必ず絶対値が2と なることがわかる。 EE, (m, n)=(-2, 0), (-2, 1), (-2, 2), (-1, 2), (0, 2) 5通り m n 入試問題にチャレンジ! 解答は, 別冊 p.47 2乗に比例する関数 Q問題 1 n を2以下の整数とする。 関数 y=xのxの変域がn≦x<3のとき,yの変域が 0≦y<9 となるnの値をすべて求めなさい。 ( 都立日比谷高) 9=9 12=0 m=0 1 問題2 関数 y=-- xについて、xの変域がa≦x≦a+5であるとき、yの変域が -4≦y0 となるようなαの値をすべて求めなさい。 ( 青山学院高 ) かる。 問題 3 α bを定数とする。 ただし, αは負の数とする。 3 関数 y=ax と1次関数y=2x+b において,xの変域が-1≦x≦3のとき,2つの関数の yの変域が一致した。 a, b の値をそれぞれ求めなさい。 (都立国分寺高) 101

回答募集中 回答数: 0
数学 高校生

一次不等式の問題(2)です。 (a+2)x<4がx<4になるようにするんですけどどうして毎回場合分けしないといけないんですか。この場合だったら場合分けしたくてもすぐにa=-1って出て他の値は当てはまらないってすぐわかると思いました

重要 例題 38 文字係数の1次不等式 (1) 不等式a(x+1) >x+α を解け。 ただし, αは定数とする。 000 (2) 不等式 ax<4-2x<2x の解が1<x<4であるとき, 定数αの値を漁 (2)類駒澤大] 基 基本34人 個す 指針 文字を含む1次不等式 (Ax > B, Ax <B など) を解くときは,次のことに注意数と A=0のときは、両辺をAで割ることができない。 AK0 のときは, 両辺を4で割ると不等号の向きが変わる。いうと指 (1) (a-1)x>a (a-1) と変形し, a-1>0, a1=0,α-1<0の各場合に分けて (2)ax<4-2x<2xは連立不等式 ax<4-2x 4-2x<2x と同じ意味。 まず,Bを解く。 その解と A の解の共通範囲が1<x<4となることが条件。 文字係数の不等式 割る数の符号に注意 0で割るのはタ CHART (a-1)x>a(a-1) [1] α-1>0 すなわちα>1のとき ① x>a まず, AxBO ①の両辺を で割る。 不等号の 0 > 0 は成り立たな 負の数で割ると の向きが変わる。 (1) 与式から 解答 [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 ①は 0x0 変わらない [3] α-1 <0 すなわち α <1のとき a>1のとき x>a, x<a よって a<1のとき a=1のとき 解はない, x<a 検討 (2) 4-2x<2x から -4x <-4 A=0のときの不 よって x>1 ゆえに,解が1< x < 4 となるための条件は, Ax>Bの解 ax <4-2x ...... ①から (a+2)x <4 ...... ① の解が x<4となることである。 [1] α+2>0 すなわち α> - 2 のとき,②から ② よって =0のとき、不等 0.x>B B0 なら 解はない なら解はすべ 4 x< よって a+2 4 a+2 =4 [I] 実数 ゆえに 4=4(a+2) よって a=-1 両辺に α+2 (≠0) これはα>-2を満たす。不 けて解く。 [2] α+2=0 すなわち α=-2 のとき,②は 0·x <4 よって、解はすべての実数となり、条件は満たされな 04は常に成り立 [3] α+2<0 すなわち α <-2 のとき,②から ら,解はすべての 4 a+2 このとき条件は満たされない。 x<4と不等号の [1]~[3] から a=-1 違う。 練習 (1) 不等式ax>x+a2+α-2を解け。 ただし, αは定数とする。 ④ 38 (2) 不等式

回答募集中 回答数: 0
1/24