学年

質問の種類

数学 大学生・専門学校生・社会人

波線部分が理解できません😿なぜそのように言い換えられるかが不明ですよろしくお願いします🙇

EN論法で, 数列の極限を攻略しよう! 数列と関数の極限 818 一般項an が与えられたとき,その極限liman の問題は高校でも既に勉 強しているね。でも,数列{an}が極限値 αをとることを示す厳密な証明 法として,大学の数学では,e-N論法をマスターする必要があるんだよ。 イプシロン・エヌろんぼう”と読む。 まず,この “e-N論法” を下に示す。 E-N論法 正の数をどんなに小さくしても,ある自然数 N が存在して, nがn≧Nならば,|an-a|< となるとき, liman=α となる。 n→∞ これだけでは,なんのことかわからないって? 当然だね。 ここは,大学 の数学を勉強する上で, みんなが最初にひっかかる第1の関門だから丁寧 に話すよ。 この意味は,正の実数を小さな値, たとえば, c = 0.001にとったとし ても,ある自然数Nが存在して, 数列 41, 2,., an-1, ax, ax+1, … のうち n≧Nのもの, すなわち ax, ax+1, に対して, α との差αが、 (N,N+1,... ε=0.001より小さく押さえられる, と言っているんだね。 ここで,正の実数は連続性と稠密 (ちゅうみつ)性をもつので,こ を限りなく0に近づけていくことができる。 それでもあるNが存在し n≧N をみたす an について, lan -α < が成り立つといっているわけ ら, n→∞のとき, α はαに限りなく近づいてlim=α と言える だね。 納得いった? 818

解決済み 回答数: 1
数学 高校生

(2) →矢印の変形はどうしてするのでしょうか?? ∮aからxの形で使わなければならない???でもxからaだとダメな理由を教えてください。お願いします

380 基本 例 242 定積分と微分法 (1) SF(1)dt=x-3x-4 次の等式を満たす関数f(x) および定数aの値を求めよ。 (2) 1000 (t)dt-x-3x 指針 とすると であるから, off(t) dt=f(x)が成り立つ。 a が定数のとき,s (1) dt は xの関数である。 その導関数について,F( dx) (t)= [F(1) = x (F(x) F(a))=F(x)=(x) 0.374 dx また、等式で x=α とおくと, f(t) dt=0 であるから, 左辺は0になる。 これより αの方程式が得られる。 (2) まず,与えられた等式を f(t)dt=-x+3x と変形して, 両辺をxで微分 定数F (α) はxで微分すると、 CHART 定積分の扱い SS"を含むならxで微分 (1) Sof(t)dt=x-3x-4 ① とする。 解答 ①の両辺をxで微分すると dx Ja ds.f(t)dt=2x-3 すなわち f(x)=2x-3 また, ① で x=α とおくと, 左辺は0になるから 0=α²-3a-4 よって (a+1)(a-4)=0 したがって ゆえに a=-1,4 f(x)=2x-3;α=-1,4 (2) Sef(t) dt=x3xから df(t)dt=f(x) dx SSf(t)dt=0 Sof(t)dt=-x+3x ②の両辺をxで微分すると Ja すなわち f(x)=-3x2+3 上端と下端を交換した ② で axSof(t)dt=-3x2+3 また,② で x=α とおくと, 左辺は0になるから ゆえに したがって 0=-a³+3a a(a²-3)=0 よって a=0, ±√3 f(x)=-3x2+3;a=0, ±√3 df (t)dt=flt としてもよい

解決済み 回答数: 1
1/65