学年

質問の種類

数学 高校生

解答の右側のユークリッドの互除法のところで、なぜ最初の式に406が入るのですか? 教えてください。

実力アップ問題 137 難易度 CHECK 1 CHECK2 和が406 で,最小公倍数が2660 である2つの正の整数a,b (a <b)を CHECK 3 求めよ。 (弘前大 ヒント! aとbの最大公約数を g,最小公倍数をL とおくと,a=a'g, b=b'g, L=a'b'g (a'とは互いに素)が成り立つ。ここで,ポイントは、 aとbが互いに素ならば,a' + b'と'b'も互いに素となることなんだね 頑張ろう! ga. 2つの正の整数a,b の最大公約数をg, と等しい。よって,これをユークリッ ドの互除法により求めると, 最小公倍数をL とおくと, なんで和が 2660=406×6+224 mw …① L=a'b'g はいるの? La=a'g |b=b'g が成り立つ。よって①,②より [ a+b= (a'+ b')g = 406 … |L=a'b'g=2660 406 = 224 × 1 + 182 www 224 = 182 × 1 + 42 www 182= 42 × 4 + 14 42 = 14×3 + 0 より, ただし,α′ と b'は互いに素な正の整 数より,a' + b'a'b' も互いに素で ある。 最大公約数g 最大公約数 g = 14 となるので ③ ④ の両辺を g で割ると, もし,a' + b' と 'b' が、 1以外の素数 pを公約数としてもつものとすると, a'+ b'=29 (10+19) a'b'=190 ...3' (= 10×19) ......' Ja+b=mp a'b' = np となり, 実力アップ問題136で示した通り, a と6' は,p を公約数にもつので、矛盾 する。 また, a' + b' と a'b' が1以外の合成数 (たとえば、pg やなど...)をもっ したとしても同様に矛盾が導ける。 よって、③、④より, aとbの最大公 数g は, 2660 と 406 の最大公約数 ここで, a<bより,α′ <b' よって,③', ④' より α' = 10,6′=19 以上を① に代入して、求める a, b の 値は次のようになる。 a=10×14=140 b=19×14=266 ・・(答)

解決済み 回答数: 1
数学 高校生

数学 整数の性質 下の写真の問題(1)についてです 解答に、「この不等式と89が素数であることより、」とあるのですが(赤マーカー部分)、 素数でなかったらどうなるんですか?解けないんですか?

_整数の性質 ~不定方程式の整数解~ (1) 到達問題の解説 11_1 n m (2) 整数a,bが2a+36=42 を満たすとき, ab の最大値は[ア ・かつmon を満たす自然数m,n を求めよ。 89 到達問題の (1) もアプローチ問題と同様に、 不定方程式の整数解を 求める問題だ。 (2) は積の最大値が問われているが、まず不定方程式 の解を求める必要がある。 「アプローチ問題」 で学んだ解法 STEP を 踏まえながら考えていこう。 →到達問題をもう一度見てみよう ← 1 方程式を整数の積の形に変形し、約数・倍数に注目 する (1) の方程式 1 1 1 m n 89 全く違って見えるが,積の形が目標であるから, まず分母を払って みよう。 両辺に89mn をかけて整理すると mn-89m-89n=0 となり、アプローチ問題 (1) と同タイプであることがわかる あと は積の形を目標に変形していけばよい。 (2) はアプローチ問題 (2) と同様に,具体的な整数解の1つを求めて 変形してもよいが, 42が3の倍数であるため, 36を移項し3でくくり 2a=3(14-b) G とする方が手間がかからない。 結果的にこれは、 具体的な整数解の1つ (a,b)=(0.14) を用いた変形となっている 【解答】 (1) m は,アプローチ問題 (1) の方程式とは 2 不等式により範囲を絞り, 考察対象を減らす (1) は, 方程式を積の形に直した後、mとnが自然数すなわち正の整 数であることと不等式 < n を利用すれば積の組合せを絞ることが できる。 1 1 = 12 89 り mn-89m-89n=0 m(n–89)–89n=0 m(n-89)-89(n-89+89)=0 (m-89)(n-89)=892 + である。 到達問題の解答 ('10 早稲田大・商) 具体的な整数解の1つとして (a,b)=(6.10) を用いると 2(a-6)=3(10-b) gum となる。 1 方程式を整数の積の形に変 形し、約数・倍数に注目する H 89 は素数なので、この式を満たす 8989の組合せのすべては、 (1, 892), (89, 89), (89², 1 (-1, -89), (-89, -89) (-89², -1) である。 「m, nはくを満たすぎ という条件から1個に絞ら ておこう。 難関大) 入試 (2) 入試 m,nはm<nを満たす自然数であるから, -89<m-89<n-89 この不等式と89 が素数であることより, (m-89, n-89)=(1, 89²) よって, m=90, n=8010 ...... 2a+36=42 変形して (答) 2a3(14-b) ..... ① 2と3は互いに素であるから αは3の倍数である。 よって, 整数kを用いて α=3k とおくことができ, このとき ①より, 2.3k=3(14-b) すなわち b=-2k+14 したがって, ab=3k(-2k+14) =-6k2+42k =-6(x-7)² + ¹47 んは整数であるから, abが最大になるのはk=3,4のとき であり、求める最大値は, ワンランク UP 演習 取り組んでみて、難しかったら、 講義に戻って考えよう。 -6.3°+42・3=72 ······ (答) 1 (1) pを素数とする。 x,yに関する方程式 + I = y P 2 不等式により範囲を絞り, 考察対象を減らす 2次関数の最大 最小は平方完成し て考える。 kは整数であり、2/7/27 とは! abt 72 60 1 方程式を整数の積の形に変 形し、約数・倍数に注目する ならないことに注意して、 前後の整! 数3,4について調べる。 1 は整数なので, ab は下の図のよう! にとびとびの値をとる。 O を満たす正の整数の組(x,y) をすべて求めよ。 ('09 お茶の水女子大理) (2) 7で割ると2余り, 11で割ると3余るような300 以下の自然数をすべて求めよ。 ('11 山形大工) Q 入試につながるヒント7で割ると2余る数と 11 で割ると余る数は、 整数を用いてどのように表されるだろうか。 UPの得点 /20点 別冊p.12の解答・解説で答え合わせをしよう! 29

解決済み 回答数: 1
1/8