学年

質問の種類

数学 高校生

この問題で、どうしてk=2、a=2と出たのに実数解を持たないことがあるのですか? 注意を読んでもよくわからないので教えてください! それと、[2]で、k=-6と出たのに、kを代入して確かめるのですか? a=2になったのだからx=2が確定したわけではないのですか?

重要 例 102 2次方程式の共通解 171 ①のののの 2つの2次方程式 2x2+kx+4=0, x+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め、その共通解を求めよ。 指針 基本97 2つの方程式に 共通な解の問題であるから,一方の方程式の解を求めることができ たら、その解を他方に代入することによって、定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では、次の解法 が一般的である。 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a+ko+4=0 ①, a²+a+k=0 これをα, hについての連立方程式とみて解く。 ② ② から導かれる k=-α-a を ①に代入 (kを消去) してもよいが, 3次方程式と なって数学の範囲では解けない。 この問題では、最高次の項であるの項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=u とおく 共通解を x=α とおいて, 方程式にそれぞれ代入すると ①, a²+a+k=0.... ② 解答 2ω^+ka+4=0 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 よって k=2 または α=2 [1] k=2のとき 3章 11 1 2次方程式 αの項を消去。 この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 の判別式をDとすると D=12-4・1・2=-7 D0 であるから,この方程式は実数解をもたない。 ゆえに、2つの方程式は共通の実数解をもたない。 2つの方程式はともに x2+x+2=0となり,この方程式 数学の範囲では, x'+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x2-6x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 < α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 をもつ。 以上から k=-6, 共通解はx=2 注意 上の解答では, 共通解 x=α をもつと仮定してαやkの値を求めているから, 求めた値に対して, 実際に共通解をもつか, または問題の条件を満たすかど うかを確認しなければならない。 (at)

未解決 回答数: 1
数学 高校生

二つの2次方程式をイコールで結んでそれを判別式Dとして共通の解を持つからD=0としてはいけない理由はなんですか?教えてくだい!お願いします!!!!

を早く ハイスクー A-104-56 重要 例題 102 2次方程式の共通解 00000 2つの2次方程式 2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数の値を定め、その共通解を求めよ。 基本的 指針 2つの方程式に共通な解の問題であるから,一方の方程式の解を求めることができ たら,その解を他方に代入することによって、 定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では,次の解法 が一般的である。 41212 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a2+ka+4=0 ...... ①, a2+α+k=0 ② これをαについての連立方程式とみて解く す ②から導かれる k=--α を ①に代入(kを消去)してもよいが、3次方程式と なって数学Ⅰの範囲では解けない。 この問題では、最高次の項である2の項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=αとおく 171 (7) T 3章 12次方程式 共通解をx=αとおいて, 方程式にそれぞれ代入すると 2a+ko+4=0 ...... ①, a2+α+k=0……… 解答 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 k=2 または α=21 [1] k=2のとき よって αの項を消去。この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 2つの方程式はともに x2+x+2=0となり、この方程式 数学Ⅰの範囲では、 の判別式をDとすると D=12-4・1・2=-7 D<0 であるから,この方程式は実数解をもたない。 ゆえに,2つの方程式は共通の実数解をもたない。 x²+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x26x+4=0, x2+x-6=0 すなわち2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 以上から 共通解はx=2 =-6, 注意 上の解答では, 共通解 x=α をもつと仮定してα やんの値を求めているから 求めた値に対して,実際に共通解をもつか、または問題の条件を満たすかど うかを確認しなければならない。 共通解としてもつとき, 実数の定数kの値は 2つの2次方程式x2+6x+12k-24=0, x2+(k+3)x+12=0がただ1つの実数を であり,そのときの共通解は p.173 EX73 である。

解決済み 回答数: 1
数学 高校生

数Ⅱ 恒等式の問題です。 重要例題22のヒントとしてCHART&SOLUTIONとあり、あとの計算がしやすいように文字を減らすと書いてあるのですが、あとの計算がしやすい文字の消去のコツってありますか??

41 重要 例題 22 条件式のある恒等式 00000 2x+y-3z=3, 3x+2y-z=2 を満たすすべての実数x, y, z に対して, px2+qy2+rz2=12 が成立するような定数, 4, rの値を求めよ。 CHART & SOLUTION 条件式の扱い 文字を減らす方針で,計算しやすいように すべてのx,y,zといっても, x, y, zの間には次の関係がある。 2x+y-3z=3 ...... 1, 3x+2y-z=2...... ② [立命館大] 基本18 1 3 つまり、 ①,②は条件式であるから, 文字を消去する方針で解く。 あとの計算がしやすいよ うに消去する文字に注意する。 ここではx,yをzで表して, 2 だけの恒等式を考える (下 の副文参照)。 ・・・・... ① 解答 2x+y-3z=3 ...... 1, x-5z=4 3x+2y-z=2・・・・・・ ② とする。 ゆえに x=5z+4 ① ×2-② から ① ×3-② ×2 から -y-7z=5 ゆえに y=-7z-5 これらを px2+qy2+rz2=12 に代入すると p(5z+4)2+g(-7z-5)2+rz²=12 よって p(25z+40z+16)+α(4922+70z+25)+rz2=12 左辺をぇについて整理すると (25p+49g+rz2+10(4p+7g)z+(16p+25g)=12 この等式がzについての恒等式となるのは, 両辺の同じ次数 の項の係数が等しいときであるから 25p+49g+r=0 ...... 3 4p+7g=0 4 16p+25g=12 (5) ④×4-⑤ から 3q=-12 ゆえに q=-4 よって、④から p=7 更に③から 175-196+r=0 ゆえに r=21 消去する文字が xの場合: ① x3-② ×2 から -y-7z=5 yの場合: ①×2 ② から x-5z=4 Zの場合: ①-② ×3 から -7x-5y=-3 となる。 これらを変形 するとき なるべく係数 が大きくならず 分数が 出てこないように考え て消去する文字を決め るとよい。 PRACTICE 22Ⓡ (1) 2x-y-30 を満たすすべてのx,yに対してax2+by2+2cx-9=0 が成り立 つとき,定数a, b, c の値を求めよ。 (2) x+y+z=2,x-y-5z=0を満たすx, y, zの任意の値に対して、常に a(2-x)2+6(2-y)'+c(2-z)2=35 となるように定数a, b, c の値を定めよ。 〔武庫川女子大】

解決済み 回答数: 2
数学 高校生

模範解答のように、場合わけしなかったんですけど、(写真2枚目)これでもオッケーですかね???

00 重要 例題 102 2次方程式の共通解 2つの2次方程式2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数の値を定め、その共通解を求めよ。 基本 97 171 "DX=RB 323 -z 指針 2つの方程式に共通な解の問題であるから,一方の方程式の解を求めることができ たら,その解を他方に代入することによって、定数の値を求めることができる。しか②xxc- しこの例題の方程式ではうまくいかない。 このような共通解の問題では,次の解法 が一般的である。 119. 1 式を解く。 D>0 D=00 えるのは 一般に2つの解をもつから、“同じだということを示す 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると ①, a2+α+k=0 ② sak 2a2+ka+4=0 これをαkについての連立方程式とみて解く。 ②から導かれる k=--α を 1 に代入(kを消去してもよいが, 3次方程式と なって数学Ⅰの範囲では解けない。 この問題では,最高次の項であるの項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 +x+k 1 3章 1 2次方程式 CHART 方程式の共通解 共通解を x=α とおく 2x ただ交点 共通解を x=α とおいて, 方程式にそれぞれ代入すると 式を解く 2a2+ka+4=0 ①, a2+α+k=0 解答 ①-② ×2 から (k-2)a+4-2k=0 α2 の項を消去。 この考 ↓ ゆえに (k-2)(a-2)=0 よって k=2 または α=2 を加減法で解くことに似 ている。 実数解 ずに [1] k=2のとき ら 2つの方程式はともに x2+x+2=0 となり, この方程式 数学Ⅰの範囲では, の判別式をDとすると D=12-4・1・2=-7 D<0 であるから,この方程式は実数解をもたない。 ゆえに2つの方程式は共通の実数解をもたない。 x²+x+2=0の解を求め [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x26x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 ることはできない。 x1=2 =2を①に代入しても ↑ よい。 ただまが同じ ってだけ よって、2つの方程式はただ1つの共通の実数解 x=2 をもつ 以上から k=-6, 共通解はx=2 注意 上の解答では, 共通解 x=α をもつと仮定してαやんの値を求めているから 求めた値に対して,実際に共通解をもつか,または問題の条件を満たすかど うかを確認しなければならない。 練習 2つの2次方程式 x2+6x +12k-24=0, x2+(k+3)x+12=0がただ1つの実数を 102 共通解としてもつとき,実数の定数kの値は ]であり,そのときの共通解は である

解決済み 回答数: 1
1/56