学年

質問の種類

数学 高校生

二次不等式が解けません この2枚目の自分のやり方がなぜダメなのか教えてください

187 基本事項 01 DO 重要 例題 1122次不等式の解法 (3) 191 次の不等式を解け。 ただし, αは定数とする。 (1) x²+(2-a)x-2a≤0 (2) ax²≤ax 基本110 文字係数になっても,2次不等式の解法の要領は同じ。 まず, 左辺 = 0 の2次方程式を 指針 解く。 それには ① 因数分解の利用 ②解の公式利用 が、ここでは左辺を因数分解してみるとうまくいく。 の2通りある 2次方程式の解α,βがαの式になるときは,との大小関係で場合分けをしてグ ラフをかく。もしくは,次の公式を用いてもよい。 a<βのとき (x-a)(x-B)>0⇔x<a, B<x (xa)(x-B) <0⇔a<x<B (2)x2の係数に注意が必要。 a0a=0,α<0 で場合分け。 CHART (xa)(x-3)の解α, B の大小関係に注意 の場合、左 形に。 に。 -1< ●場合、左の コピー4+50円 ての実数 v>0 (1)x2+(2-α)x-2a≧0から 解答 [1] a<-2 のとき,①の解は a≤x≤-2 [2] a=-2 のとき,① は (x+2)'≤0 よって,解は x=-2 [3] -2<αのとき, ① の解は (x+2)(x-a)≤0 ① [2] [3] x x a a 0 -2 -2≤x≤a 以上から a<-2のとき a≦x≦2 2-4x+10 a=-2のとき 2<αのとき (2) ax≦ax から ax(x-1)≤0. ① 0>(8-)(1 x=-2 -2≦x≦a [1]a>0 のとき, ①から x(x-1)≤0 両辺を正の数αで ときy=l ときy> よって,解は 2010- [2] α=0 のとき,①は 0x(x-1)≦0 これはxがどんな値でも成り立つ。意 よって、は すべての実数 [3] a< 0 のとき, ①から +6 ・軸は共有 これと 下に っては x0,1≦x 以上から x(x-1)≥0 >0 すべて a>0 のとき 0≦x≦1; a = 0 のとき すべての実数; a<0 のとき x≦0, 1≦x 割る。 ( となる。 は 「< または = 」 の意味で, <とのどちらか一方 が成り立てば正しい。 ①の両辺を負の数αで 割る。 負の数で割るから、 不等号の向きが変わる。 注意 (2)について, ax≦ax の両辺をax で割って, x≦1としたら誤り。 なぜなら、 ax = 0 のときは両辺を割ることができないし, ax < 0 のときは不等号の向きが変わ るからである。

解決済み 回答数: 2
数学 高校生

高一三角関数 汚くてすみません、写真の内容はわかっているのですが、青マーカーの部分だけわかりません、なぜこの二つになるのですか。

基本 例 152 2直線のなす角 y=3√3+1 (1) 2直線x-2y+2=0, 3√3x+y-1=0 のなす鋭角0を求めよ。 (2) 直線y=20-1との角をなす直線の傾きを求めよ。 指針 ① 2直線のなす角 まず、各直線と軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tano (0≤0<π, 0+7) (1) 2直線とx軸の正の向きとのなす角をα, β とすると, TC 2 13 3p.241 基本事項2 ya n 2直線のなす鋭角日は,α <βならβ-α または π- (B-α) で表される。 ←図から判断。 m 0 確 g y=mx+n n x この問題では, tanα, tan β の値から具体的な角が得られないので, tan (β-α)の計 算に 加法定理を利用する。 tan√ for 解答 (1) 2直線の方程式を変形すると √3 y= -x+1, y=-3√3x+1 2 y=3√3x+1/y 602 ことし 図のように, 2直線とx軸の正 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角は √3 tan α = 2 0=B-a tanβ=3√3 で tanQ=tan(β-α)= = tan β-tana 1 + tan βtana | 単に2直線のなす角を求め 0 B O るだけであれば, p.241 基 本事項 2 の公式利用が早 い。 傾きがm, m2 の2直線 のなす鋭角を0とすると y=√13x+1=10tan 0=| 2 -6√13- 1-3 2 2 2 別解 m-m2 1+mm2 2直線は垂直でないから tan 0 √3 2 -- (-3√3) 1+ ・(-3√3) 2 7√3 =√3 2 7 ÷ 2 y y=2x y=2x-1 050から π 2 0= 3 809 D 200T (3-1)(1+(-3/3)・=13 00<であるから 2 π 0= = (2) 直線y=2x-1とx軸の正の向 きとのなす角をαとすると tana=2 6 π tana±tan 4 0 /tan π 4 x π 1F tanatan CIA 4 2±1 fl 1+2.1 (複号同順) 6歳 であるから,求める直線の傾きは "Y=-=-(2 37=-2+8 2 2 直線のなす角は、それ ぞれと平行で原点を通る 2直線のなす角に等しい。 そこで,直線y=2x-1 を平行移動した直線 y=2x をもとにした図を かくと, 見通しがよくな

解決済み 回答数: 1
数学 高校生

黄色いマーカーを引いたところってどのように計算して答えを出しますか? 私が計算したら-1±√iが出ました。

基本 例題 61 高次方程式の解法 (2) 次の方程式を解け。 ①① 103 (1) x°+3x²+4x+4=0 (2)2x+5x3+5x2-2=0 p.101 基本事項 1 前ページと同様に,左辺を因数分解し、1次、2次の方程式に帰着させる。 公式利用,おき換えでは因数分解しにくいから,因数定理を利用する。 なお, (1) の左辺の係数はすべて正であるから, xに正の数を代入しても=0にはなら ない。よって, 負の数を代入してみる。 (1) P(x)=x3+3x2+4x +4 とすると 解答 P(-2)=(-2)+3(-2)'+4(-2)+4=0 (*) 組立除法 1 3 4 4-2 2 2章 11 1 高次方程式 よって,P(x) は x+2 を因数にもつ。 ゆえに P(x)=(x+2)(x2+x+2) (*) P(x)=0から x+2=0 または x2+x+2=0 x+2=0から x2+x+2=0から x=-2 - −1±√7i x= 2 したがって 1±√7i x=-2, 2 (2) P(x)=2x4 +5x3+5x2-2 とすると P(-1)=2(-1)*+5(-1)+5(−1)-2=0 よって,P(x) は x+1 を因数にもつ。 ゆえに -2-2-4 1 1 2 0 < x+2 を因数にもつこと に着目し, 割り算しない で P(x)=x3+2x2 +(x2+4x+4 ) =x2(x+2)+(x+2)2 =(x+2)(x2+x+2) と変形してもよい。 25 5 0 -2|-1 -2-3-2 2 P(x)=(x+1)(2x3+3x2+2x-2) また, Q(x)=2x3+3x2+2x-2 とすると (1/21)=(1/2)+3(1/2)+2.1/2- 2 3 2-2 0 +2・ -2=0 よって, Q(x)はx x-1/2 を因数にもつ。 12 20 3 2-2 224 ゆえに Q(x)=(x-212) (2x2+4x+4) Q(x)=(x-1)(2x+4x+4) =(2x-1)(x2+2x+2) (x+1)(2x-1)(x2+2x+2)=0 x+1=0 または 2x-1=0 よって ゆえに x+1=0から または x2+2x+2=0 x=-1 2x-1=0から x= x2+2x+2=0 から したがって x=-1±i 1 x=-1, -1±i 2 2 1 2 4

解決済み 回答数: 1
数学 高校生

163と164の問題のポイントの違いと、解法の使い分けを教えてほしいです。

262 かいう関数とくに 例題 163 三角関数の最大・最小 (4) ... t=sin0+cos000 関数f(6) =sin 20+2(sin0+cos0-1 を考える。 ただし, 0≦0<2πとする。 基本例 (1) t=sin0+cos0 とおくとき, f(0) の式で表せ。 Xtのとりうる値の範囲を求めよ。 (3) f (6) の最大値と最小値を求め, そのときの0の値を求めよ。 指針 (1)t=sin6+cos0 の両辺を2乗すると, 2sincos が現れる。 (2) sin+cos0 の最大値、最小値を求めるのと同じ。 【類 秋田大 基本 144 146 14 (3) (1) の結果から, tの2次関数の最大・最小問題 (tの範囲に注意) となる。 よって、 基本例題146と同様に 2次式は基本形に直すに従って処理する。 (1)t=sin+coseの両辺を2乗すると t=sin'0+2sin Acos+cos20 sin20=t2-1 sin20+cos20=1 f(0)=t-1+2t-1=t+2t-2 解答 ゆえに t2=1+sin20 よって したがって (2) t=sin0+cos0=v =√/2sin (04/ ...... ① π 9 ...... ② である 0 00<2のとき、40+ から したがって (3)(1)から √ -15sin (0+2)51) -√2≤t≤√2 f(日)=t2+2t-2=(t+1)^-3 f(0) は √2の範囲において, t=√2 で最大値 2√2, t=-1で最小値 -3をとる。 =√のとき,①から sin (6+4)=1 (1,1) ②: 合成後の変域に注意。 [f](日)]] 2√2 W2 A-1 sin(0+1)=1 ② の範囲で解くと π 0+ πC すなわち π -2 4 2 4 -3 最小 1 の代 √2 ②の範囲で解くと 0+ 5 7 4 4 π, 4 すなわち =π, よって 3 =1のとき,①から sin(e+) 32 -π ズーム UP t=sin 例題163 は, (1) (1)(2)がなく,[ もしれない。 例 の背景 (おき換 sin 0, cos 例題 163 のf(E f(9)=2sinOcc から,sine,c ここで, sin0, t=sin+cost sin20+cos^0= すなわち、もう よって, sin 0 直すことがで 例題 163 では 基本形α(t 変数のお p.234 でも学 認することを 例題 163 は, (おき換え t= tの関数に直 囲,すなわち めるうえでの 必要がある。 t=sin0+cc 04のとき最大値 2√2;0=πのとき最小値 3 参考 例題 163 関数 y= 右辺 y= ② 関数y= y= 練習 0≦のとき ③ 163 (1) t=sin0 - cosのとりうる値の範囲を求めよ。 (2) 関数 y=cos-sin20-sin0+1の最大値1

解決済み 回答数: 1
数学 高校生

(1)を、それぞれの直線を平行移動させて原点を通る2直線に変えて(切片を無視するため)解いたのですが、 範囲が90°未満になる理由が分からないです(マークしてます)。 参考書通りの解法なら180°を超えたりしないのは分かるのですが、自分のやり方だと有り得るように感じてしまい... 続きを読む

基本例 1522 直線のなす角 0000O (1) 2直線、3x-2y+2=0, 3√3x+y-1=0 のなす鋭角0を求めよ。 |(2) 直線 y=2x-1との角をなす直線の傾きを求めよ。 p.241 基本事項 2 ① 2直線のなす角 まず 各直線とx軸のなす角に注目 指針 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tane (0≤0<, 0+7) (1) 2直線とx軸の正の向きとのなす角をα β とすると, n m y=mx+n n 2直線のなす鋭角0 は, α <βなら β-α または π(β-α) で表される。 ←図から判断。 0 この問題では,tanα, tan β の値から具体的な角が得られないので, tan (B-α)の計 算に 加法定理 を利用する。 解答 (1)2直線の方程式を変形すると 13 y=-33x+1 4y y= -x+1, y=-3√3x+1 2 図のように, 2直線とx軸の正 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角 0 は tanα 2 0-B-a tan B=-3√√3 T tan0=tan(β-α)=- tan β-tana 1+tan βtana 8 a 0 x =x+1 01 800 1 -(-3√3-3)=(1+(-3√3)=√3 2 2 0<< であるから 0 (2)直線 y=2x-1とx軸の正の向 y y=2x きとのなす角をα とすると /y=2x-1 tang=2 tana±tan- tan(a±)= 2±1 1Ftantan- 4 π 4 0 4 1 4 1+2・1 (複号同順) であるから x 単に2直線のなす角を るだけであれば, p.241 本事項 2 の公式利用が い。 傾きが m1, m2の2 のなす鋭角を0とする m-m2 tan 0= 1+mm2 別解 2直線は垂直でないか tan 0 √3 2 --(-3√3 1+2 (-3v 2 7√3 7 ÷ -=√√√3 2 2 00から0= 2直線のなす角は それと平行で原 2直線のなす角に そこで,直線y= を平行移動した y=2xをもとに

解決済み 回答数: 1
数学 高校生

(2)の問題についてです!青い線のところでなんで項数がkになるんですか?k-1じゃないんですか?

442 基本 例題 次の数列の初項から第n項までの和を求めよ。 20 一般項を求めて和の公式利用 00000 (2)1, 12, 1+2+22 ...... (1)12,32,52, 基本 1 19 32 指針 次の手順で求める。 ① まず 一般項を求める→ 2Σ (第に項)を計算。 Σk, k, Σk の公式や、場合によっては等比数列の和の k=1 公式を利用。 注意で,一般項を第n項としないで第k項としたのは,文字n が項数を表して →第k項をkの式で表す。 いるからである。 (2) ax=1+2+2+... +2k-1 ←等比数列の和 等比数列の和の公式を利用してak をkで表す。 CHART Σの計算 まず一般項 (第ん項) をんの式で表す 解答 (1) a 与えられた数列の第k項をα とし,求める和を Sn とする。 (2k-1)2 0 k=1 n k=1 k=1 n n よってSn=2ax=2(2k-1)=2(4k-4k+1)える ◆第ん項で一般項を考え る。 JJ k=1 k=1 =4k²-4k+Σ1 k=1 -/13n{2(n+1)(2n+1)-6(n+1)+3} = (DX=(1+r) ◆1nでくくりの中 に分数が出てこないよう 11/13n(n-1)=1/13n(n+1)(2n-1)バーにする。 1/12(4-1)=1/13n(n+1) (n-1)(s) #30 (1) (*) (2) ak=1+2+2²+......+2k-1 = 1• (2-1) = 2k_st 143 n 2-1 Sn2=(2-1)=22-21 ak は初項1,公比2 数の等比数列の和。 よって k=1 k=1 k=1 k=1 参考 S, = (22~)と 2(2n-1) -n=2"+1-n-2 表すこともできる。 2-1 注意 和が求められたら, n=1,2,3として検算 するように心掛けるとよい。 例えば,(1)では,(*)において, n=1とすると1で これは 12 に等しく OK。 (*)において n=2とすると10で, 12+32=10 から OK。 4150 結羽 創 (

解決済み 回答数: 1
1/9