学年

質問の種類

数学 高校生

特に(2)と(3)がわかりません。 (2)と(3)の誘導が理解できてないため(4)もわかりません。 (2)と(3)だけでも教えてください。 一応(2)はわかったのですが、(3)との違いがわかりません。

箱の中に10本のくじが入っており、そのうち3本が当たりくじである。 このくじを10人が1本 つ順に引くとき、次の確率を考える。 ただし, 引いたくじはもとに戻さないものとする。 ① 3番目の人が当たりくじを引く確率 ②7番目の人が当たりくじを引く確率 (3) 当たりくじを○, はずれくじを●で表すことにし、3個の○と7個のを横一列に並べる試行を 考える。 ○と●の並べ方の総数は ス 通りである。 ①について, 左から3番目に○がある並べ 方は 3番目の人と7番目の人が当たりくじを引く確率 (まず①について考える。 1番目 2番目3番目にくじを引く人が当たりくじを引く事象をそ ぞれ A, B, Cと表し、 P(C) の値を求めよう。 ス 通りあるから, 3番目の人が当たりくじを引く確率は の解答群 ク ケコ である。 ⑩ 10C3 ①10P3 ② 10P7 ③ 10! ア P(A)= イウ である。また、1番目の人が当たりくじを引いたとき、2番目の人も当たりくじ の解答群 I 引く条件付き確率はP(B)= である。さらに、1番目と2番目の人がともに当たりくじも オ © 9C2 ①9P2 カ 引いたとき 3番目の人も当たりくじを引く条件付き確率はP(C)- であるから、 23-9P2 ③ 9P7 ④39P7 ⑤ 9! 6 3-91 (2),(3)のいずれかの考え方を用いると、 ②について 7番目の人が当たりくじを引く確率 キ ツ ア エン ■ク は P(A∩BNC)= である。他の場合も同様に考えると,P(C)- ソ タチ であり,について。 3番目の人と7番目の人が当たりくじを引く確率は と求 テト イウ オ キ ケコ めることができる。 ある。 しかし、 同じやり方で② ③を考えることは難しい。そこで、別の試行に置き換えて考える。 (2) 10本のくじを1. kg..... ks と表すことにし, ki, k, k が当たりくじであるとするこ 10本のくじを横一列に並べる試行を考える。 この試行において、 くじの並べ方の総数は サ りである。 ①について、 左から3番目に当たりくじがある並べ方はシ 通りあるから3番 (4) これまでの箱とは異なる箱に1000本のくじが入っており、 そのうち10本が当たりくじである。 このくじを100人が1本ずつ順に引くとき、3番目 7番目 100 番目の3人が当たりくじを引く確 ナ (配点 15) 率は である。 [ニヌネノ <公式・解法集 36 39 43 ク の人が当たりくじを引く確率は である。 ケコ の解答群 ⑩ 10C3 ① 10P3 ② 10P7 ③ 10! の解答群 ⑩ 9C2 ① 9P2 ② 3.9P2 ③ 9P 7 ④ 39P7 ⑤ 9! ⑥ 3.9!

解決済み 回答数: 1
数学 高校生

5 (1)についてです。 2枚目の写真なのですが、必要十分条件は十要だと覚えてるのですが、矢印の上の左から右に行くところが十分なのか、左がのことを十分というのかどちらなのか教えていただきたいです🙇‍♀️ また、この問題の場合は条件aの十分条件だから左側で合ってますか? ど... 続きを読む

S 〔2〕 四角形ABCD に関する条件α ~g を次のように定める。 a: 平行四辺形である。 ✓ 6: AB=CD かつ BC = DA vc: AD//BC d: AD // BC かつ ∠A= ∠C e: 二つの対角線がそれぞれの中点で交わる。 f: 二つの対角線の長さが等しい。 g: 二つの対角線が直交する。 小 (1)条件6~gのうち、条件αの十分条件であるものをすべて挙げた組合せとして正しいものは ウ5 である。 ウ |の解答群 b, c ① b, d 2d, e b, c, fb, d, e 5 d, e, f (2)条件6~g のうち、条件αの必要条件であるものをすべて挙げた組合せとして正しいものは エロである。 エ の解答群 O b, c, f 3 b, c, d, e ①b, de 4. b, d, e, g 2d, e, f ⑤ d,e,f,g (3) 「α かつオ」は四角形ABCDが長方形であるための必要十分条件である。 オ の解答群 O b C e ④ f g (4)条件〜gのすべてを満たす四角形ABCD は カ の解答群 ⑩ 存在しない 4 正方形である 正方形でないひし形である ③平行四辺形でない台形である (配点 10) (公式・解法集 7 8 9

解決済み 回答数: 1
数学 高校生

7 ①サが③になる理由が分かりません。1枚めの写真の右下にグラフを書いたのですが、どうやったら2次関数で表せるのですか? ②シスセソが分かりません。解説を読むとy=e(x-p)の2乗とあるのですが、この式に➕qをしなくて良い理由が知りたいです。y=e(x-p)の2乗➕qだ... 続きを読む

太郎さんと花子さんは,先生から出された次の問題について考えている。 問題 座標平面上に5点A(1,6), B(2.7), C(-2,-9), D(-4,-9), E (-7, 21) がある。 (i) 2次関数y=f(x) のグラフが、 3点 A, B, C を通る。 f(x) を求めよ。 (i) 2次関数y=g(x) のグラフが, 3点C, D, E を通る。 g(x) を求めよ。 先生: 2次関数のグラフの特徴をいかして, 2次関数の置き方を工夫できましたね。2次関数は, グラフが通る3点が与えられればただ一つに定まりますが、通る点から2次関数の置き方を 工夫すると、面倒な計算を避けることができますね。 では、次の問題を考えてみてください。 太郎: f(x) は2次関数だとわかっているから、f(x)=ax+bx+c とおいて計算すれば, a, b,c の値を求めることができそうだね。 3a+b=1 花子: f(x) は2次関数だから,ア という条件が必要だよ。 -730-36--15 太郎: そうだったね。 3点を通る条件が順に 49:16 ic=-a-h+g+b+c= 46-29-0-6=7, Bath=1 4-4 C-6-1774-6 a+ エンb+c=70-21-6-1+5=-930-392-15 3a+4=1 805-3 =(-4546 カン6+c=-9 a:-1 だから、この連立方程式を解くと, α = [キク h コクと求まるね。 でも, (ii)で同じことをしようとすると, 計算が面倒だね。 花子 2次関数のグラフの対称性を使うともう少しうまくできそうだね。 太郎: たしかに, 2点C, Dのy座標が等しいということから も大きいものは,頂点の座標が セ 先生: よくできました。 問題 2次関数のグラフがx軸に接し、2点 (1,1) (3,4)を通るとき、この2次関数を求めよ。 先生: この問題は、接する点の座標がわかっていないから、2次関数はただ一つに定まるかどうか わかりません。これまでの2人の学習をいかして、 2次関数の置き方を工夫して考えてみま しょう。 花子:できました。このような2次関数は2つあり、このうち、グラフの頂点のx座標が最 ス 51 ソリとなりますね。 (2) g(x)= サ ~に当てはまる数を求めよ。 とすることができるね。 花子: g(x)= サ とした方が, (i) と同じようにするよりも計算が楽にできそうだね。 (1)イ~ コに当てはまる数を求めよ。 ア の解答群 ⑩ a=1 ① a=-2 2 a=0 ③ a > 0 ④ a<0 の解答群 ⑩ d(x-3)2-9 ① d(x-3)2 +g ② d(x+3)2-9 ③ d(x+3)+q E. 21 -4 -2 0 C -9 -18- f(x)=ax2+bx+c sayaoc = 1 (qa+3+C=4 <<-19-> (配点 15) <公式・解法集 13

解決済み 回答数: 1
数学 高校生

アイのところなのですが、面積比だから底辺の比の2乗じゃないのですか? どなたかすみませんがよろしくお願いします🙇‍♀️

16 難易度 ★★ △ABC があり, AB=2, AC=1, ∠BAC=120°である。 BAC の二等分線と直線BCの交点をDとする。 次の(i)(ii) の3 通りの考え方で, 線分AD の長さを求めよう。 (i) △ABD と △ACD の面積の比が (△ABDの面積):(△ACDの面積) アレ 2 600 1600 B © 20 D 3 であるから,BD:CD = ウ エロである。BC24+1-2.2.1.(2)=7 1 ただし、 ア イ ウ I |はそれぞれ最も簡単な整数比で答えよ。 2 ここで,BC=√ より, BD カキリ である。 36 ∠BAD=ケコ であるから, △ABD において, 余弦定理により 9 PAD-18AD+8:0AD-2AD+ サイ 0 シの BO2=AB2+AD2.2LAB.AD.1/2 28=4+AD2-2AD AD2-2AD+49:0 28 3-4-12 9 :-2 -6 78-18 が成り立ち、この方程式を解くと AD 2 2 である。 ただし、 > 24 と セイ タ セイ タ する。 BAD-4:0 3AD=4. 線分AD の長さは, ス AD=1313/ 4 ソ タ 3 217317 2.7 17 △ACD においても余弦定理によりADの値は2通りに求められ、それぞれの余弦定理で求めた HA と2通りに求められる。 3 チ2 値のうち、共通のものが正しい線分AD の長さであり, AD である。 (ii)(i)と同様にBC, BD の長さを求める。 ここで, △ABCに注目すると cos ∠ABC 〒5 トク である。 これより, △ABD において, ∠ABD についての余弦定理により, 線分AD の長さを求 めることができる。 -4 (Ⅲ) △ABD の面積は COS∠ABC= -AD である。 25. 4+7-1 2.2.√7 10×1500円 い 2814 73 75 また, △ABCの面積が であるから,△ABDの面積は ハ2 である。 これらより, 線分AD の長さを求めることができる。 (配点 15 ) 6 175 6 sin∠B=1- f 142 <公式・解法集 22 24 25 26 1243 fxe 6 sincB い エ ✓142 √2712 2 16 142 +2 21 23 2 3 △ABC=立っかい △ABDas1217 GABERS 12.9 GABCのS △ABD=1/2.2.ADsin600 こ 2. AD AD い △ABD=12AD 20

解決済み 回答数: 1
数学 高校生

オカキなのですが、合同でない△ABCが2つ存在しの所の意味がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

1 TEAB=4AB-12:0、AB'+4AB44:0 19 難易度 ★★ 1+4 4 目標解答時間 9分 90 SELECT SELECT 60 (1)△ABCにおいて,∠A=60°, AC = 4 とする。辺BCの長さに対する△ABC の形状や性質 次の(i)(ii)の場合について考えよう。 (i) BC=2√3 のとき, AB=| アムであり、△ABCはイである。 (ii) BC4のとき, AB=ウであり,△ABCは エである。 A 60° 4 イ エ ] の解答群(同じものを繰り返し選んでもよい。) B C ⑩ 正三角形 ①直角三角形 ②鈍角三角形 (iii) BC= オ のとき, 合同でない△ABCが二つ存在し, それぞれ △ABC, △ABC とす sin∠ABC= cos AB₁C= キ である。 オ については,最も適当なものを、次の①~③のうちから一つ選べ。 √7 /11 ② 15 √19 カ キ の解答群(同じものを繰り返し選んでもよい。) sin∠ABC ① -sin∠AB2C COS ∠ABC (3) - cos AB₂ C (2)△ABCにおいて, ∠A=40°, BC = 7, AC=x とする。 △ABC が存在するようにしながら、xの値を増加させると, sin B の値は ク これにより、xの値のうちで最大のものは ケ である。 また, 合同でない △ABC が二 在するxのとり得る値の範囲は, コ <x< である。 ク の解答群 増加する 変化しない ① 減少する ②増加することも減少することもある ケ コ ラ サ の解答群 (同じものを繰り返し選んでもよい。 ) 7 sin 40° ① 7sin 40° 14 sin 40° sin 40° 7 14 7 14 sin 40° sin 40° 16+AB2-2/4.AB・(土)=16 AB2+4AB=0 AB(AB+4)=0 (配点 (公式・解法集 21 22

解決済み 回答数: 2
1/13