学年

質問の種類

生物 高校生

128番の解き方を教えてください

基本問題 - 143 128 連鎖と組換え 遺伝子型が AaBb であるア~エの個体をそれぞれ検定交雑した ところ、生じた子の表現型とその分離比は次のようになった。 下の問いに答えよ。 ア [AB〕 〔Ab〕〔aB〕 〔ab〕=1:9:9:1 [AB〕〔Ab]: 〔aB〕〔ab〕=1:0:0:1 5 ウ [AB〕 〔Ab〕 〔aB] [ab〕=1:1:1:1 着画 エ [AB〕 〔Ab〕 〔aB〕: 〔ab〕=4:1:1:4 I (1) ア~エの個体の遺伝子A (a) と B (b) の位置関係はどのようになっているか。 次の ①~③から適切なものを選び、番号で答えよ。 ① AとBが同じ染色体上に存在する。 S 10 ② Aとbが同じ染色体上に存在する。 ③ A (a)とB(b) は異なる染色体上に存在する。 (2) (1)の①、②のように, 2組の対立遺伝子が同じ染色体上に存在する場合を何というか。 (3) (1) の③のように, 2組の対立遺伝子が異なる染色体上に存在する場合を何というか。 ・(4) 図は、体細胞における各遺伝子の遺伝子座を表している。 ア個(ト) 15 体とエ個体における遺伝子 a, B, bの位置はどこになるか。 そ〉 A れぞれ図中の番号で答えよ。 *(5) ア~エの個体のうち、配偶子形成時に遺伝子の組換えが起こっ た個体はどれか。 すべて選び, 記号で答えよ。 また, それぞれが 配偶子を形成する際の組換え価も求めよ。 ④ (3) 5

回答募集中 回答数: 0
数学 高校生

数1の質問です! この問題でなぜ(1)は定義域の中央値をだすのか (1)と(2)の解き方に違いがある理由を 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

14 基本 例題 64 グラフが働く場合の関数の最大・最小 (1) 最大値を求めよ。 αは定数とする。 関数f(x)=x2-2ax+a (0≦x≦2) について (2) 最小値を求めよ。 (1) p.107 基本事項 2 基本 60,63 重要 1 CHART & SOLUTION 係数に文字を含む 2次関数の最大・最小 軸と定義域の位置関係で場合分け まず, 基本形に変形すると f(x)=(x-a)-a²+a このグラフの軸は直線x=αで,文字αの値が変わると軸 (グラフ) が動き, 定義域によっ して最大値と最小値をとるxの値も変わる。 したがって, 軸の位置で場合分けが必要となる。 (1) y=f(x)のグラフは下に凸の放物線であるから,軸からの距離が遠いほどyの値は大 きい。 よって、 定義域 0≦x≦2 の両端から軸までの距離が等しくなる (軸が定義域の中央に 致する)ようなαの値が場合分けの境目となる。 0+2 このαの値は、定義域 0≦x≦2の中央の値で =1 2 [1] 軸が定義域の 中央より左 [2] 軸が定義域の 中央に一致 [3] 軸が定義域の 中央より右 軸 軸 最大 軸が最大 動く ●最大 軸が最大 動く 定義域 定義域 の中央 定義 の中央 の中央 (2)y=f(x)のグラフは下に凸の放物線であるから, 軸が定義域 0≦x≦2 に含まれてい れば頂点で最小となる。 含まれていないときは, 軸が定義域の左外にあるか右外にある かで場合分けをする。 [4] 軸が定義域 の左外 [5] [6] 軸が定義域 軸が定義域 の内 の右外 121 最小 #30 95 最小

未解決 回答数: 1
数学 高校生

(2)についてです。なぜイコールがつくのかが分かりません。(マーカー部分)他の参考書の最大値を求める問題ではイコールをつけてないものもあるのですが何故なのでしょうか

(2) 98 第2章 関数と 応用問題 1 a は実数の定数とする. 2次関数f(x)=x'-4ax+3 について (1) f(x) の 0≦x≦2 における最小値を求めよ. (2)f(x)の≦x≦2 における最大値を求めよ. 精講 すので,軸と変域の位置関係に注意して 「場合分け」をする必 あります。 最小値と最大値で場合分けのポイントがどこになるのかを、 文字定数の値によって関係に注意してアコの類の位置が く観察してみましょう。 解答 f(x)=(x-2a)-4a2+3 より, y=f(x) のグラフの軸はx=2a である. 注意 (1) グラフの軸 x=2α が, 変域 0≦x≦2の 「左側」 にあるか 「中」にお か「右側」にあるかで,最小値をとる場所が変わる. 軸が変域の 「左側」にある 2a<0 すなわち a<0 のとき (i) 軸が変域の 「中」 にある ... 軸が変域の 「右側」にある 0≦2a≦2 すなわち 0≦a≦1のとき 2a>2 すなわち α>1のとき なので、この3つで場合分けをする. (i) α < 0 のとき x=0で最小値をとり 最小値は,f(0)=3 (i) 0≦a≦1のとき 文) x=2a で最小値をとり、最小値は, f (2a)=-4α²+3 () α>1のとき x=2で最小値をとり, 最小値は, f (2)=-8a+7 以上をまとめると 3 (a< 0 のとき) 求める最小値は, -4'+3 (0≦a≦1 のとき) (最小 [-8a+7 (a1 のとき) (ii)

未解決 回答数: 1
1/215