学年

質問の種類

数学 高校生

なぜ赤で囲まれたところでは、.... <(1/3)^n(3-a1)なのに回答では<=になっているのか? ChatGPTに聞いてみたけどよくわかりませんでした。教えて欲しいです

重要 30 漸化式と極限 (5) ・・・はさみうちの原理 00000 数列 (a) が 03.42=1+1+α (n=1, 2, 3, ......) を満たすとき (1) 03を証明せよ。 ((3) 数列{an) の極限値を求めよ。 指針 (2) 3-** <1/12 (3-2)を証明せよ。 [ 神戸大] p.34 基本事項 基本 21 ① すべての自然数nについての成立を示す数学的帰納法の利用。 (2)(1)の結果、すなわち、3-0であることを利用。 (3) 漸化式変形して、一般項αをの式で表すのは難しい。そこで、(2)で示した 不等式を利用し、はさみうちの原理を使って数列 (3-α)の極限を求める。 はさみうちの原理 すべてのnについて Disastのとき limp = limg =α ならば なお,p.54.55の補足事項も参照。 lima-a 53 CHART 求めにくい極限 不等式利用ではさみうち 2章 数列の極限 解答 (1) 0<an<3 ...... ① とする。 [1] n=1のとき,与えられた条件から①は成り立つ。 [2] n=kのとき,①が成り立つと仮定すると 0<ak <3 nk+1のときを考えると, 0<ak<3であるから ak+1 1+1+ak >2>0 ak+1=1+1+ak <1+√1+3=3 したがって 0<ak+1 <3 < よって, n=k+1のときにも①は成り立つ。 [1], [2] から, すべての自然数nについて ①は成り立つ。 (2)3-αn+1=2√1+an = 3-an 2+√1+an </13- <1/3 (3-4) \n-1 lim (3)(12) から, n≧2のとき no 3 1\n-1 したがって 03-am = (1/3) =(1/2) (301) (3-α1) = 0 であるから lim(3-an)=0 N1X liman=3 n→∞ 数学的帰納法による。 <0<a<3 <<αから√1+ax >1 <3から√1+αk <2 3-a>0であり,an>0 から an> n≧2のとき, (2) から 3-and- an< (3-an-1) (1/2)(3)……… \n-1 (1/2)(3) 3 =2, n=2のとき a2= 2/2 am1-1/2 を満たす数列{an)について すべての自然数nに対してan>1であることを証明せよ。 「類 関西

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

27番(1)の問題についてです。 解答の意味を理解できません。 解答の解説をしてほしいです。 よく分からないのは以下の2点です。 1.具体的にどのような順序関係を与えたのか  (⊆なのか≦なのか他のものなのか) 2.解答の図位置にくるようなaは存在するのか

31. 定理 10.2:A=Bにより定義した関係は同値関係である。これを証明せよ。 30. 3個の要素をもつ互いに相似でない半順序集合はいくっあるか。それぞれ図を書け。 1 Aは上に有界か。(2) Aは下に有界か、3 spA) は存在するか、 25. (1) pを素数としたとき,(p,2)が極小元である。 26. (1) ただ1つの要素からなる集合が極小元である。 194 A=||zEQ, 8<せく15 第の 平修集合と全手集合 19s とおく。 4 inf(A) は存在するか。 (e) Bに最初の元があるか。 d) Bに最後の元があるか。 1) a) Bの極小元をすべて求めよ。 )Bの極大元をすべて求めよ。 2)を空でないBの全顧序部分集合のなす族。通に集合の包含関係で順序を与える。 a)の極大元をすべて求めよ。 4)の極小元をすべて求めよ。 相似な集合 (e) に最初の元があるか。 dに最後の元があるか。 102: A=Bにより定義した関係は同値関係である。これを好囲せよ 25. M = |2,3.4,…!とする。MXMにつぎのように順序を与える。. がeを割り切り、 bがd以下のとき,(a.b)% (c.d)とする。 (2) 極大元をすべて求めよ。 1)極小元をすべて求めよ。 補充問題の答 26. M=|2.3.4..」 に"ェはyを割り切る”で順序を与える。さらに、#をMの空でない全層を部。 集合のなす族。『に集合の包含関係で半順序を与える。 (1).rの極小元をすべて求めよ。 20(1) a) 317 (2) (al (b,(dのみ全順序集合である。 (6) 2>8 (c) 6<1 d 3>33 (2) .の極大元をすべて求めよ。 (6)415 (e) 5|| 1 4<2 12) 27.つぎの各命圏は真であるか偽であるか,偽である場合は反例をあげよ。 (1) 半順字集合Aが極大元』をただ1つもつならば, aは最後の元である。 (2) 有限半順序集合Aが極大元』をただ1つもつならば,aは最後の元である。 (3) 全序集合が極大元』をただ1つもつならば,aは最後の元である。 上界と下界 28. W=|1,2,…, 7,8|につぎのような単序を与える。 (4) 集合として(3)と同じ集合 2 d)(2,2)<(15, 15) 23. 住,,4)。 (2,4) 2,3) (1) Wの部分集合A=|4,5,7| を考える。 (1,4} (a) Aの上界集合を求めよ。 ) Aの下界集合を求めよ。 (2)Wの部分集合B=|2.3.61 を考える。 e) sup(A)は存在するか。 {3] dind(A)は存在するか。 24.(1) a) dとf (e)ない ある。 aが最後の元 (6)a Bの上界集合を求めよ。 () Bの下界集合を求めよ。 (3) Wの部分集合C=|1,2,4,7| を考える。 a) Cの上界集合を求めよ。 () Cの下界集合を求めよ。 12) (a) la,b.dl. la.b.e.fl. la, c.jl )ただ1つの要素からなる集合である。 lal.1bl,lel.Idi, lel,I/l. (e) ないd)ない e) sp(B)は存在するか。 inf(B) は存在するか。 le) sup(C)は存在するか。 indC) は存在するか。 pを素数としたとき, (p.2)が極小元である。 (2) 極大元はない。 29.有理数の集合Qに自然順序を与え。 た,…を任意の妻教列とすると、 in.np.ARm.…」 のタイプの集合が極大元である。

解決済み 回答数: 1
1/5