学年

質問の種類

数学 高校生

24番の(2)の解説の最後の方で判別式を使っている理由が分かりません(Pの値に関わらず成り立つ→判別式D<0⇐?)

思考プロセス 求める2次関数を y=ax2+bx+c とおく。 ← 頂点の 条件はないから一般形でおく。 条件の言い換え /直線 y=2x-1 心 x=1で接する { [y=ax2+bx+c y=2x-1 を連立すると, α(x-1)=0 の形になる。 702 5 求める放物線の方程式を よって y=ax2+bx+c (0) a= 4 これを①に代入して この不等式がの値にかかわらず成り立つから. -p+mp-3-0の判別式をDとすると D<0 all pe 25 [区間に定数を含む関数の最大・最小] f(x)=x10x+18 よって したがって 120 2/5 <m<2/3 式の全体に絶対値記号 とおくと, 直線 y=2x-1にx=1で接するから 方程式 ax+bx+c=2x-1 は重解 x=1 をもつ。 (1) y= (x-1)+(2x-1) AI (定数) の形であるから (2) よって ax²+bx+c-(2x-1)=a(x-1)2 となるから y=ax+bx+c =a(x-1)+(2x-1) ... D と表せる。 これが, 点 (1,2)を通るから 2=α(-1-1)+(-2-1) (x-2x+1)+(2x-1) 心 (x²-2x+ 1 1 = ·x+ 4421 た したがって、求める放物線の方程式は A=± (定数) f(x) のグラフは y=x10x + 18 のグラフを [y 0 の部分はそのままにして、 ly < 0 の部分はx軸に関して対称に折り返す。 図で考える (最大値)7となるためには, a Sx Sa+4 は y= x+ 2 1 4 大阪 24 [放物線がx軸から切り取る 線分 ] (1) 条件の言い換え 50 + \y=mx-3 y 思考のプロセス ①がx軸と異なる2点で交わる y=0とした方程式の (判別式) 0 (①の頂点のy座標) > 0 問題で与えられた他の条件から どちらが計算しやすいか考える。 BO AA-4 B x軸から切り 取る線分 y- 「αより右側」 かつ 「βを含む」 かつ 「yより左側」 β-a=y-B√14 <4であるから, 例えば、 「x=αで最大かつx = β [ a+4 「に含まれない」 場合はない。 (1) f(x) = 7 より |x10x +18|-7 (i) x10x + 187 のとき x-10x+11= 0 よって x = 5±√14 (i)x10x + 18 7 のとき x-10x +25=0 (2) y=f(x) のグラフは次のようになる x-10x+18=±7 |A-7 のとき A=±2 18 思考のプ a-5 β-5 となる. (x-5)=0 このときの ABの長さをm で表す。 よって x=5 (2) (①とy軸の共有点のy座標) ①の頂点が直線 O (i), (ii)より ←y=mx-3上にある x=5±√14,5 = g = -p+mp -3 求めるものの言い換え y=-po+mp-3 の値にかかわらず-p+mp-30 となるmの値の範囲 1) 放物線 ① の頂点は直線 y=mx-3 上にあり, 頂点のx座標が-4であるから, y 座標は -4-3である。 したがって, 放物線 ①がx軸から切り取る線分の 長さは -4+√-4m-3-(-4-√ -4m-3) 放物線 ①は上に凸であるから, x軸と異なる2点 (a, b) (2 301 =2√-4m-3 4m-3) で交わるためには -4m-3 0 頂点に関する条件が与 えられているから, (2)y=-xp ++g より 放物線 ①の頂点 の座標は (p,p+g 1121210 3 (頂点の座標) > 0 よって m<- 4 から考える。 これが直線 y=mx-3 上にあるから p'+q=mp-3 p²+mp-3 ここで、①は y=(x+4)-4m-3 と表され るから,①とx軸の交点のx座標は よって -(x+4)-4m-3=0 (x+4)=-4m-3 x=-4±√-4m-3 q= よって, 放物線 ①とy軸の共有点のy座標は -mp-3であり, これが負となるから -p+mp-3<0 5 0 15-14 5+14 ここで, 5-(5-√14)=√14 < (5+√14)-5=√14 <4である が7となるのは 5-√14sa かつ as5 かつ a+ 3 のときである。 ①より ② より 1≤a≤5 a≤ 1+√14 したがって、 求めるαの値 5-14 sasit

解決済み 回答数: 1
数学 高校生

赤い線を引いたところが,なぜなのか分かりません💦

コメント 結果的にいえば、2つの円の方程式を の方 x2+y^-5=0……①,r'+y^-6x+2y+5=0 とするとき2円の交点を通る直線は ①②であっさり求められるわけです. 最初聞いたときは, 「えっ、なんで?」と思ったものですが,すでに説明した ように,「①,②」と「①-②②」の同値関係を考えることで説明できるわ けですね. すが 奈良 この「同値」の考え方の威力を感じていただくために,次のような問題を絡 介しておきましょう. 例題 平面上に3つの円があり,どの2つの円も異なる2点で交わっているも のとする.各2円の異なる2つの交点を結ぶ3つの直線は1点で交わるこ とを示せ. 設定がとても一般的ですので,解こうにも何から手を つけてよいのかわからないような問題ですね.ところが, 図形と方程式の考え方を用いれば,ほとんど計算をする ことなく証明できてしまうのです. まず,3つの円を一般形 (x'+y' + lxc+my+n=0の 形)で表した方程式を ① ② ③とします.すると,①と②の2つの交点を通 る直線は 「①-②」, ②と③の2つの交点を通る直線は 「②③」, ①と③の2 つの交点を通る直線は 「①③」 と表せます. (2x 2-3 この +2①-2 (1)(2 これは、 (3) 一致する ②③ ①+ 1-3 けば ③ ことな る ここで 件は、 が成り立つことです ①③=(①-②)+(②-31- 0 (S) なのですから, 「①-② ②③」 と 「①③ ② ③」は同値です。 つまり、 それぞれの直線の交点は一致するわけですから,3直線は1点で交わります.

回答募集中 回答数: 0
数学 高校生

図形と方程式の問題なのですが2つの共有点を通るならkを置かずに①=②で良いのではないかと思ったのですがなぜkを置いているのか教えて頂きたいです。

例題 1062円の交点を通る円 2つの円x2+y2=5 ・1, x2+y2+4x-4y-1=0 (1)2円の共有点の座標を求めよ。 0000 ②について (2) 2円の共有点と点 (10) を通る円の中心と半径を求めよ。 p.166 基本事項 指針 (1) 2円の共有点の座標→ 連立方程式の実数解 を求める。 本間のような2次と2次 の連立方程式では、1次の関係を引き出すとよい。 具体的には,①と② を辺々引 いて2次の項を消去し, x, yの1次方程式を導く。 次に, その1次方程式と①を連 立させる。 (2)(1) で求めた2点と点 (1, 0) を通ることから,円の方程式の一般形を使って解決 できるが,ここでは, p.166 基本事項 2 を利用してみよう。 2点で交わる2つの円f=0,g=0に対し 方程式kf+g=0(kは定数) つまり2円 ①,②の交点を通る図形として,次の方程式を考える。 k(x2+y2-5)+(x2+y2+4x-4y-1)=0 この図形が点 (1,0) を通るとして,x=1,y=0を代入し,kの値を求める。 CHART 2曲線f= 0, g=0 の交点を通る図形 kf+g=0(kは定数)を利用 (1) ② ① から 解答 よって 4x-4y-1=-5 ③①に代入して y=x+1 ...... (3) x2+(x+1)=5 よって 整理して x2+x-2=0 ゆえに (x-1)(x+2)=0 ③から x=1のとき y=2, したがって, 共有点の座標は x=1, ⑤ S x=2のとき y= -1. (1, 2), (-2, -1) (2)kを定数として,次の方程式を考える。 k(x2+y2-5)+x2+y'+4x-4y-1=0. さが ④ ④ は, (1) で求めた2円 ① ② の共有点を通る図形(*)を表す 図形 A が点 (1, 0) を通るとして,人に x=1, y=0 を 代入すると -4k+4=0 ③は,2円の共有点 を通る直線の方程式 である。これは,(2) 解答の人に k=-1を代入して 得られる式と同じで ある。 (*) を円と書か k=-1の ないこと。 ときは直線を表す。 よって k=1 これをAに代入すると 2x2+2y2+4x-4y-6=0 √5 (1,2) (1,0) X ゆえに x2+y2+2x-2y-3=0 すなわち (x+1)²+(y−1)²=500<-√5 ① したがって 中心 (-1, 1), 半径52- (-2,-1)-5

解決済み 回答数: 1
数学 高校生

この下の例題で、各円の方程式を引いたらそれぞれの交点を通るのは分かるのですが、「ここで」の後がいまいちピンと来ません。丁寧に解説お願いしたいです

90 第3章 図形と方程式 コメント 結果的にいえば、 2つの円の方程式を x² + y²-5=0, x²+y²−6x+2y+5=0__····· とすると円の交点を通る直線は①②であっさり求められるわけです。 最初聞いたときは, 「えっ、なんで?」 と思ったものですが,すでに説明した ように, 「①②」 と 「①-②, ②」の同値関係を考えることで説明できるわ けですね. 「この「同値」の考え方の威力を感じていただくために,次のような問題を紹 介しておきましょう. 例題 平面上に3つの円があり,どの2つの円も異なる2点で交わっているも のとする.各2円の異なる2つの交点を結ぶ3つの直線は1点で交わるこ るので、 とを示せ . 設定がとても一般的ですので,解こうにも何から手を つけてよいのかわからないような問題ですね. ところが上回 図形と方程式の考え方を用いれば、 ほとんど計算をする ことなく証明できてしまうのです. まず3つの円を一般形 (x2+y^+lx+my+n=0の 形)で表した方程式を ① ② ③とします. すると, ①と②の2つの交点を通 る直線は「①-②」,②と③の2つの交点を通る直線は 「②③」, ①と③の2 つの交点を通る直線は 「①③」 と表せます. 「ここで 一致する 2-3813 ①ONOS 1359 1-3=(1-2)+(2-3) 1-= del なのですから, ①②, ②-③」 と 「①-③, ② - ③」は同値です.つまり、 それぞれの直線の交点は一致するわけですから、3直線は1点で交わります。 し

回答募集中 回答数: 0
数学 高校生

(2)の解答の赤線の部分がわかりません。なぜ(p,2p-1)と表せるのですか

2 基本例題 70 放物線の平行移動と方程式の決定火 ①①00円 次の条件を満たす放物線の方程式を,それぞれ求めよ。 (1) 放物線 y=2x² を平行移動した曲線で, 2点 (1,-1), (2,0)を通る。 (2) 放物線 y=-x2+2x+1 を平行移動した曲線で, 原点を通り,頂点が重 線y=2x-1 上にある。 CHART & SOLUTION 放物線の平行移動 HOZOBID 平行移動によってx^2の係数は不変 x2の係数はそのままで、 問題の条件により、 基本形または一般形を利用する。 (1) 移動後の頂点や軸が与えられていないから,一般形からスタート。 平行移動してもx²の係数は変わらず2である。 (2) 頂点に関する条件が与えられているから、 基本形からスタート。 頂点(b, g) が直線y=2x1 上にある4=2p-1 解答 #*0*1080 DR (1) 求める放物線の方程式を y=2x2+bx+cとする点や軸の位置はわか 放物線が2点 (1,-1),(20) を通るから らないから, 一般形で 考える。 b+c=-3, 26+c=-8 これを解いて よって, 求める方程式は b=-5,c=2 y=2x²-5x+2 (2) 求める放物線の頂点が直線y=2x-1 上にあるから, 頂点の座標は (p, 2p-1) と表される。 よって, 求める方程式は y=-(x-p)2+2p-1 と表される。 放物線が原点(0, 0) を通るから 0=-(0-p)^2+2p-1 すなわち p22p+1=0 (p-1)²=0 これを解いて p=1 基本 68 ゆえに よって, 求める方程式は y=-(x-1)2+1 (y=-x2+2x でもよい inf.x軸との交点(20) が含まれているので,分解 形y=2(x-2)(x-β)から スタートしてもよい。 LODDER 頂点の座標を利用する から、基本形で考える。 HAUS inf. (1) y=2(x− p)²+q, (2) はy=-x2+bx として, 問題の条件から, 未知数p, Q, bを求めることもできる。 重 C

解決済み 回答数: 1
数学 高校生

(1)中心cは直径abの中点ってなんでわかるのですか? 球面の方程式って聞かれたら標準形と一般形を覚えなくてはならないのですか?

。 12 標 る 2 b です球面の方程式を求めよ。 次の条件を満たす。 2点A(1,2,4), B(-5, 8, -2)を直径の両端とする。 (x-a)²+(y-b)²+(2-c)²=r² > 球面の方程式には, 次の2通りの表し方がある 1 (2) 点 (5, 1,4)を通り, 3つの座標平面に接する 球の中心や半径のいずれかがわかる場合は, 1 標準形 を用いて考える。 ② 一般形x2+y2+² + Ax+By+Cz+D=0 (1) 「線分 AB が直径」から, 中心 Cは線分ABの中点。 また (半径) AC BC また,x>0,y0,z>0である点を通ることから,中心の座標は半径を用いて表すこ (2) 「3つの座標平面に接する」 から,中心から各座標平面に下ろした垂線が半径。 Y とができる。 この球面の中心Cは直径 ABの中点であるから (1) d125 1-5 2+8 4/22) すなわちC(-2,5,1) また、球面の半径をrとすると =AC2=(-2-1)+(5-2)+(1-4)227 よって (x+2)+(y-5)+(z-1)=27 半径r=3√3 ① 標準形で表す。 球面が各座標平面に接し、かつ点 (5, 1, 4) を通ることか <x>0,y>0,z>0の部 半径をrとすると,中心の座標は(r, r, r) と表される。 にある点を通ることから 中心もx>0,y0,z> (x-r)^2+(y_r)^2+(zr)^²=re の部分にある。 ゆえに、球面の方程式は 点 (5, 1, 4) を通るから r2-10r+21=0 (5-r)²+(1-r)²+(4-r)² = r² ゆえに (r-3)(r-7)=0 したがって r=3, 7 M.P.3 基本事項 中心と半径が見える形。 (x-3)²+(y-3)²+(2-3) ²=9 #l (x-7)²+(y-7)²+(z-7)²=49 答えは2通り。 焼 直径の両端が与えられた球面の方程式 2点A(x1, y1, 1), B(X2, y2, zz) を直径の両端とする球面の方程式は 7 ) = 0

解決済み 回答数: 1
1/20