学年

質問の種類

物理 高校生

この問題の(3)の後半についてで、解答には力学エネルギーが保存すると書いてあるのですが、保存する理由は、小球と台が受けてる保存力以外の力は、台がストッパーSから受けてる力のみで、ストッパーは動かないのでF【N】×0【m】=0【J】より、仕事をしていないので、小球と台のに物体... 続きを読む

17 曲面AB と突起 Wからなる質量 Mの台が水平な床上にあり,台の左 側は床に固定されたストッパー S に 接している。 Bの近くは水平面とな っていて,そこからんだけ高い位置 にあるA点で質量m(m <M) の小 A 小球 m h 台 S M W B 床 床 39 球を静かに放した。 小球は曲面を滑り降りて突起 Wに弾性衝突し,台 はSから離れ,小球は曲面を逆方向に上り始めた。台や床の摩擦はな 重力加速度を①とする。 突起 Wと衝突する直前の小球の速さはいくらか。 小球がWと衝突した直後の, 小球と台の速さはそれぞれいくらか。 (3) 小球が曲面を上り,最高点に達したときの台の速さはいくらか。 また,最高点の高さ(Bからの高さ)はいくらか。 次に,ストッパーSをはずして, 台が静止した状態で,小球をA点 で静かに放す。Ins Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 Wとの衝突後, 小球が達する最高点の高さはいくらか。 (東京電機大+日本大)

解決済み 回答数: 1
物理 高校生

Ⅳの(3)でd/3までの釣り合いが安定でそれより大きくなると不安定になる理由がわからないです。教えて頂きたいです。よろしくお願いします。

図 2-3 (a) のように, 前間と同じ平行板コンデンサーの極板P を自然長 ばね定数の絶縁体の軽い ばねに接続し ばねの他端を壁に固定した. また, 極板 P2 を壁から距離 l+dの位置に固定した (極板の厚さ は無視できる)、 極板 P1 P2 には, それぞれ電荷 +Q (Q > 0), -Qが蓄えられている。 また, 壁とばねの静 電誘導による電荷は無視できるものとする。 質量mの極板P は極板P と平行な位置関係を保って左右にな めらかに動くことができるものとする。 極板P1 に力を加えて壁から距離の位置に保持した。 極板P1 と極板 P2の間の電場の大きさをE。 とする. 図2-3 (b) のように極板P」を壁から距離(+ェの位置にゆっくりと移動した。 極板 P, にばねからはたら く力と極板間の静電気力がつりあうときの位置を Q, Fo, k, m, co のうち必要な記号を用いて表せ、ただ し, 0<x<d とする. ⅣV 次に, P1 を図2-3(a) の位置に戻し、 図2-4 (a)のようにスイッチと電圧Vo(> 0)の直流電源に接続し た。その後、スイッチを閉じ, 極板 P, に力を加えて図2-4(b) のように壁から距離+æの位置にゆっくり と移動した(ただし<z<dとする)。その後,極板 P, を移動するために加えていた力をなくした。導線が -Kx Pl + Q 0000000000 d (a) 10000000 極板P が及ぼす力は考えない (1) 極板 P1 が壁から距離1+の位置にあるときに極板P, にはたらく力F (x) を Vo, S, d, z, k, m, Eo のうち必要な記号を用いて表せ。 ただし, 極板 P1 から P2 に向かう向きを正とする. (2) 極板 P1 にはたらくばねからの力と極板間の静電気力がつりあう位置が存在するためには, Vo はある上 限値Vm より小さくなければならない。このVm を S, d, k, m, so のうち必要な記号を用いて表せ. (3) Vo Vmの場合に存在するつりあいの安定性について説明せよ。 ただし, 「a <æ <bの範囲に存在す るつりあいは安定(または不安定)」 という形式で,存在するすべてのつりあいについて言及せよ. Foyd FEQ P₁ P2 +Q 0000000000 HI l+x (b) ・ 114471 9 図2-3 P₁ P₂ 0000000000 V₁ (a) 図2-4 l+x d-x GV (b) 萬 Fol F:EG

解決済み 回答数: 1
物理 高校生

至急お願いします🙇‍♀️🙇‍♀️🙇‍♀️ (2)で、向心力は円の中心に向かう向きに働く力だから、上側にはたらくと思ったんですけど、どうして下向きなんですか??

。 基本例題30 鉛直面内の円運動 図のように,質量mの小物体が, 摩擦のない斜 面上の高さんの点から静かにすべりおりた。 斜面 の最下点は半径rの円の一部になっている。 重力 加速度の大きさをg として 次の各問に答えよ。 (1) 斜面の最下点での小物体の速さを求めよ。 om 1501 (2) 斜面の最下点で, 小物体が面から受ける垂直抗力の大きさを求めよ。 指針 (1) では, 力学的エネルギー保存の 法則から速さを求める。 この結果を用いて, (2) では,最下点での半径方向の運動方程式を立てる。 解説 (1) 最下点での速さを”とし す べり始めた直後と最下点に達したときとで, カ 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, 1 mgh= mv2 2 v=√2gh (2) 重力と垂直抗力の合力が、 最下点での小物 基本問題 213 02 m-=N-mg 体の向心力になる。 半径方向の運動方程式は, AN JON r (1)の結果を用いて, N=mg (1+ (1+2/7 ) mg Point 鉛直面内の運動は等速円運動とならな いが,各瞬間において, 等速円運動と同様の運 動方程式を立てることができる。

解決済み 回答数: 1
物理 高校生

(2)の解説にW=−0.50×1.0×9.8×l=−4.9 とありますがWの硬式はW=fxなのに何故9.8や動摩擦係数が入ってくるのですか? 何故そのあと 1/2×1.0×0²-1/2×1.0×7.0²=−4.9l l=7.0²/2×4.9 という式になるのですか? 物理基... 続きを読む

基本例題 24 保存力以外の力の仕事 点Aを境に左側がなめらかで右側があ らい水平面がある。 点Aより左側のなめ らかな水平面上で, ばね定数100N/m の ばねの一端を固定し,他端に質量 1.0kg -0.70m→ [-00000 自然の長さ→ 109,110 解説動画 -I [m〕- A あらい水平面 B の物体を置く。 ばねを 0.70m だけ縮めて手をはなすと, 物体はばねが自然の長さ になった位置でばねから離れた。重力加速度の大きさを9.8m/s2 とする。 (1) 物体がばねから離れるときの速さは何m/sか。 物体はばねから離れた後右に進み, 点Aを通過して点Bで停止した。 (2) 物体とあらい面との間の動摩擦係数が 0.50 のとき, AB間の距離は何mか。 指針 (2) 力学的エネルギーの変化=動摩擦力がした仕事 (W=-Fx) 解答 (1) 最初に物体のもつ弾性力による位置エ ネルギーはU=1/12/ -×100×0.702J ばねから離れた後に物体のもつ運動エ ネルギーは K=1×1.0×2 [J] ゆえにv=√100×0.70°=7.0m/s (2) 動摩擦力が物体にした仕事は W=-0.50×1.0×9.8×l = -4.92 [J] 物体の力学的エネルギーの変化= W より 1/12×1.0×0°-12×1.0×7.0°=-4.9ℓ 力学的エネルギー保存則より 7.02 ゆえに1= -=5.0m +1/2×100×0.70°= 1/2×1.0×μ+0 2×4.9

解決済み 回答数: 1
物理 高校生

・1枚目の写真の基本例題21(3)の解説で 式は0+1/2×50×x²とありますが(2)のB地点での位置エネルギーは0なのに、なぜ(3)ででてくる位置エネルギーはなぜ0じゃないんですか? ・2枚目の写真の基本例題22(2)の問題で解説には運動エネルギーと重力による位置エネル... 続きを読む

48 第1編■運動とエネルギー 基本例題 21 力学的エネルギーの保存 104~108 解説動画 ともになめらかな, 斜面 AB と水平面 BC がつな がっており、点Cにばね定数50N/m の長いばねが つけてある。 水平面 BC から 2.5mの高さの点Aに 質量 2.0kgの物体を置き, 静かにすべり落とした。 ただし、重力加速度の大きさを9.8m/s2 とし, 水平面 BC を高さの基準にとる。 (1) 点Aでの物体の力学的エネルギーは何Jか。 2.5m B C (2) 水平面 BC に達したときの物体の速さは何m/sか。 (3) 物体がばねに当たり, ばねを押し縮めていくとき, ばねの最大の縮みxは何mか。 指針 (2),(3) 重力や弾性力 (ともに保存力) による運動では, 力学的エネルギー (運動エネルギー Kと位置エネルギーUの和) は一定に保たれる。 すなわち K+ U =一定 解答 (1) KA+ UA=0+2.0×9.8×2.5 =49 J (3)(2)と同様に, K+U=KA+UA (2) 力学的エネルギー保存則により ばねが最も縮んだとき, 物体の速さは 0 であるから K = 0 KB+UB=KA+UA よって 0+1×50×x=49 1 よって -×2.0×2+0=49 2 v2=49 x²= = 49_7.02 ゆえに x=1.4m ゆえにv=7.0m/s 25 5.02

解決済み 回答数: 1
1/105