学年

質問の種類

数学 高校生

マーカーの部分で、 x→∞だと、x>1、0<1/x<1と考えていいのはなぜですか? x→∞の時xの範囲が必ずこれになるんですか?

基本例題134 関数の極限 (4)… はさみうちの原理 0000 [3x] (1) lim 次の極限値を求めよ。ただし,[x] は x を超えない最大の整数を表す。 x1x Xx ¤¨ (2) lim(3*+5*)½ X11 p.218 基本事項 5, 基本 105 225 指針 極限が直接求めにくい場合は、はさみうちの原理 (p.218 ⑤5 2)の利用を考える。 (1)n≦x<n+1(n は整数) のとき [x]=n すなわち [x]≦x<[x]+1 この式を利用して f(x) ≦ [3x]≦g(x) よって [3x]3x < [3x]+1 x (ただしlimf(x)=limg(x)) となるf(x), g(x) を作り出す。なお、記号[ ]は ガウ ス記号という。 (2)底が最大の項 5 でくくり出す (^{(2x)+112=5{(1/2)+1/+ (12/3)の極限と{(12/3)+1} の極限を同時に考えていくのは複雑である。 そこで、はさ 4 1 B みうちの原理を利用する。 x→∞であるから,x>1 すなわち 0 <1と考えてよい。 CHART 求めにくい極限 不等式利用ではさみうち 解答 (1)不等式 [3x]≧3x< [3x]+1が成り立つ。x>0のとき,各辺 [3x] [3x] 1 x .. をxで割ると ≤3< + x ここで, x から 3- [3x] 3-1[3x] XC ≤3 x x [3x] =3 81X x 3< x はさみうちの原理 f(x)≦h(x)≦g(x) で limf(x)=limg(x)=a ならば limh(x)=a [3x] 13x1+1/2カ lim (3-1)=3であるから lim X11 1 1 mil-nfe (2) (3*+5)=(5* {(3)*+1}] *=5{(3)*+1}* x→∞であるから,x>1,0<<1と考えてよい。 このとき XC 底が最大の項5でくくり 出す。 mil {(1/2)+1}{(1/2)+1}^{(1/2)+1…(*) 4>1のとき,a<bならば (g)+1={(号)+1}^{(1/2)+1} すなわち1<{(1/2)+1}* <(2/2)+ 1< {( 3 ) * +1} * < ( 3 ) * +1 °°である。 2.200 (213) +1>1であるから, 1 lim (13)+1}=1であるから /31 (*)が成り立つ。 lim +1}^=1 81X フェ よって 135 lim (3*+5*) * = lim 5{( 3 )*+1} *=5.1=5 x→∞

解決済み 回答数: 1
数学 高校生

高校数学IIです!! (1)(2)両方わかりません!!特に写真の紫と赤で色がつけられてるところがわかりません。 どなたかよろしくお願いします🙇‍♀️

358 第6章 微分法 例題 181 微分係数代 5f(x)-xf(5) (1) 微分係数の定義に従って lim xx-5 f(a+h)-f(a-2h (2) 微分係数f' (a) の定義に従って lim f' (a) で表せ. h-0 **** f(5) f'(5) で表せ (東京薬科大) を (防衛大改) 考え方 (1) f'(5)=lim f(x)-f(5) (2)f'(a)=lim flat ○)-f(a) h→0 5 x-5 5f(x)-xf(5) 解答 (1) lim →5のままで考える。 5 x-5 =lim {f(x)-f(5)}を作るた 5 ,5f(5) を引いて加え JAR Focus >>>> 練習 [181 ** =lim 5 5f(x)-5f(5) +5f(5)-xf(5) x-5 5{f(x)-f(5)} -f(5)(x-5) +lim x-5 5 x-5 微分係数の定義 limf(x)-f(5) x+5 x-5 =5f'(5)-f(5) -+lim{-f(5)} 5 (2) limf(a+h)-f(a-2h) -0 h limf(a+h)-f(a) +f(a)-f(a-2h) =lim h-0 f(a+h)-f(a) h -lim h h→0 fla-2h)-f(a) h =limf(a+h)-f(a) h -(-2)-lim f'(a)+2f'(a)=3f'(a) f(a-2h)-f(a) -mil f(a+h)-f(a)を作る f(a)を引いて加え 分子のα-2hに合 分母も2hにし 前に2を掛ける. h→0 -2h h0のとき2 f'(a)=limf(x)-f(a) f' (a)=lim f(a+)-f(a) x-a x-a ●は例題181(2)のように、んではなく-2hになる場合もあるが、2箇所の →0のときでないといけない.ただし, lim の下はん→0のままでより また、例題181 の解答では,次の性質を利用している. (kは定数) limkf(x)=klimf(x), lim{f(x)±g(x)}= limf(x) limg(x) (複号同 xa x a →ロ x-a (1) 微分係数 f' (a) が存在するとき, 極限値 lim 用いて表せ。 xa f(a+3h)-f(a) 4-0 h (2) 微分係数 f'(a) の定義に従って limf(a-h)-f(a+3h) て表せ. h→0 をf'(

解決済み 回答数: 1