学年

質問の種類

数学 高校生

高一三角関数 よろしくお願いします🙇

156 数学Ⅱ π 3 よって、 求める解は 0= 5 8' 8π, 7 18 TC, „IHSVY 1807 ③ 160 (1) cos d 3 sine 練習 次の式をrsin (0+α) の形に変形せよ。 ただし,r>0,πとする。 2 (2) sin Cos (1) P(-√3, 1) とすると √3 sin 20-cos20=2sin (207) であるから, 不等式は 2sin (20) +1<0 すなわち sin(207) 1/2 =t とおくと,00<2のとき (3)4sin0+7cosg 20-= この範囲で sint<! P(-√3.1) 1/2を解くと <<<< <A-75 11 19 6 23 6 6 6π 7 すなわち 11 19 6 6 6 23 π 2 6 よって <<*. *<<2x <20-<,<20-< OP=√(-√3)+1=2 線分OPがx軸の正の向きとなす角は 5 π 6 よって cos0-√3 sino=2sin(+0) (2) P (12/12) とすると √3 ここの符号 って OP= =1 (1)+(-2)-1 どうやって決まるの ですか? 線分 OP がx軸の正の向きとなす角はプ よって 1/2sincosbasin (7) 練習 次の関数の最大値と最小値を求めよ。 また、そのときの8の値 ② 162 (1) y=sino-√3 cose (1)y=sin0-√3cos0=2sin (0-1) (2)y=sin ( -70-727 00であるから (3) P(4,7) とすると OP=√4°+72=√65 √3 また、線分OP がx軸の正の向きとなす角をα とすると P4. よって 2 ssin (-4) したが (07/1 65 sina= 7 /65 4 π COS α = 0- √65 3 2 すなわち 0=1のとき よって 4sin0+7cos0=√65 sin (0+α) 04 3 ただし, sinα= 7 √65 4 cos a=- √65 練習 082 のとき,次の方程式、不等式を解け。 ② 161 (1) sin0+√3cos0=√3 (1) sin0+√3cos0=2sin(0+/- ) であるから、方程式は (2) cos20-√3 sin 20-1>0 y PL 12 √3 201 2sin (0+/-)=√3 すなわち sin (0+/4/5)=2 π 2015-10 すなわち 3 (2) y=(sinc 2 cos 0. 0=0のとき最 √3)+sing-sin 2 +sin6=sin/ √(√3 sin-cos 0)=- 2 =√3 sin(0) √3 2sin(0- 32 OOSTであるから450-4562 よって1/12sin(0-1) 1 すなわち 0 6 2

解決済み 回答数: 2
数学 高校生

高一三角関数 汚くてすみません、写真の内容はわかっているのですが、青マーカーの部分だけわかりません、なぜこの二つになるのですか。

基本 例 152 2直線のなす角 y=3√3+1 (1) 2直線x-2y+2=0, 3√3x+y-1=0 のなす鋭角0を求めよ。 (2) 直線y=20-1との角をなす直線の傾きを求めよ。 指針 ① 2直線のなす角 まず、各直線と軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tano (0≤0<π, 0+7) (1) 2直線とx軸の正の向きとのなす角をα, β とすると, TC 2 13 3p.241 基本事項2 ya n 2直線のなす鋭角日は,α <βならβ-α または π- (B-α) で表される。 ←図から判断。 m 0 確 g y=mx+n n x この問題では, tanα, tan β の値から具体的な角が得られないので, tan (β-α)の計 算に 加法定理を利用する。 tan√ for 解答 (1) 2直線の方程式を変形すると √3 y= -x+1, y=-3√3x+1 2 y=3√3x+1/y 602 ことし 図のように, 2直線とx軸の正 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角は √3 tan α = 2 0=B-a tanβ=3√3 で tanQ=tan(β-α)= = tan β-tana 1 + tan βtana | 単に2直線のなす角を求め 0 B O るだけであれば, p.241 基 本事項 2 の公式利用が早 い。 傾きがm, m2 の2直線 のなす鋭角を0とすると y=√13x+1=10tan 0=| 2 -6√13- 1-3 2 2 2 別解 m-m2 1+mm2 2直線は垂直でないから tan 0 √3 2 -- (-3√3) 1+ ・(-3√3) 2 7√3 =√3 2 7 ÷ 2 y y=2x y=2x-1 050から π 2 0= 3 809 D 200T (3-1)(1+(-3/3)・=13 00<であるから 2 π 0= = (2) 直線y=2x-1とx軸の正の向 きとのなす角をαとすると tana=2 6 π tana±tan 4 0 /tan π 4 x π 1F tanatan CIA 4 2±1 fl 1+2.1 (複号同順) 6歳 であるから,求める直線の傾きは "Y=-=-(2 37=-2+8 2 2 直線のなす角は、それ ぞれと平行で原点を通る 2直線のなす角に等しい。 そこで,直線y=2x-1 を平行移動した直線 y=2x をもとにした図を かくと, 見通しがよくな

解決済み 回答数: 1
数学 高校生

なぜこの問題でrを計算する必要がないんですか? rの値が変わったら答えも変わるはずなのに、rを無視して計算して座標を変数なしで決定しているのに納得いきません…

246 基本 例題 153 点の回転 π 00000 点P(3, 1) を, 点A (1, 4) を中心としてだけ回転させた点をQとする。 (1) 点A が原点0に移るような平行移動により、点Pが点P'に移るとする。 点Pを原点Oを中心としてだけ回転させた点の座標を求めよ。 (2)点Qの座標を求めよ。 P.241 基本事項 2 基本 指針点P (x0,yo)を,原点Oを中心として0だけ回転させた点を Q(x, y) とする。 y OP= r とし,動径 OP とx軸の正の向きとのなす角をαと x=rcosα,yo=rsina Q(rcos(a+0), sin(a+0) 3 0 P (rcosa, a rsina) x 解答 すると OQ=r で, 動径 OQとx軸の正の向きとのなす角を考える と 加法定理により x=rcos(a+b)=rcosacose-rsinasino =xocoso-yosin であるから 0 y=rsin(a+0)=rsina cos 0+rcos asinė OE =yocos0+xosin A この問題では,回転の中心が原点ではないから,上のことを直接使うわけにはいかな 3点P, A, Q を,回転の中心である点 A が原点に移るように平行移動して考える。 (1)点Aが原点0に移るような平行移動により、点Pは点 | P'(2, -3) に移る。 次に, 点 Q' の座標を(x', y') とする。 また, OP'=rとし, 動径 OP' とx軸の正の向きとのな 角をα とすると 2=rcosa, -3=rsina 12 x軸方向に -1, y 軸 方向に-4だけ平行移 動する。 補羽 S よってx=rcos(a+ x=rcos(u+/4/5)=r T =rcosa cos π 3 -rsinasin- 3 rを計算する必要はな 3 =2. ——— (−3). √3 π y=rsin(u+/4/5)=2 2+3√3 π =rsinacos+rcosasin T 3 3 YA 4 √3 2√3-3 =-3・ +2・ 2 2 1 したがって,点Q'の座標は (2+3/3 2/3-3) 2√3-3 (2) Q',原点が点Aに移るような平行移動によって, 点Qに移るから,点Qの座標は 2√3+5 (2+33 +1, 2√3-3+1)から(4+3/3 2/3+5) P 012 3 -3- P

解決済み 回答数: 2