学年

質問の種類

数学 高校生

赤線のところの式変形がわかりません もう一個わからないところがあってsin60°分のaってどこのことですか?

276 例題 170 正四面体の高さと体積 基本例 000 1辺の長さがαである正四面体 ABCD において, 頂点A から BCD AH を下ろす。 (1) AH の長さんをαを用いて表せ。 (2) 正四面体 ABCD の体積Vをαを用いて表せ。 (3) 点Hから △ABCに下ろした垂線の長さをαを用いて表せ 許 (1) 直線 AH は平面 BCD 上のすべての直線と垂直であるから AHIBH, AHICH, AHIDH ここで, 直角三角形 ABH に注目すると よって まずBH を求める。 AH=√AB2-BH また,BHは正三角形 BCD の外接円の半径であるから, 正弦定理を利用。 (2)(四面体の体積)=1/12 (底面積)×(高さ) HABC, HACD, HABDの体積は等しいことも利用。 (1) AABH, AACH, AADH (3) 3つの四面体 HABC いから、 (四面体 HABC =(正四面 が成り立つ。 求める垂線の長さを (四面体 HABC 1 3 また, (2) より 正 から,これらを よって x= 解答 はいずれも ∠H=90° の直角三 角形であり AB=AC=AD, AH は共通 であるから D である。 直角三角形におい 辺と他の辺がぞ 等しいならば互い 検討 重心の性質を用い 正三角形におい (1)のAH の長さ なお, 重心につ 100B H 三角形の 三角形の △ABH=△ACH=△ADH よって BH=CH=DH C ゆえに、Hは ABCD の外接円の中心であり, BH は H は BCDの 辺 CD の中点 ABCD の外接円の半径であるから, ABCD において、 (数学Aで詳しく であるから a 正弦定理により =2BH-EL sin 60° ABCD は正三角 り、1辺の長さは したがって a a よって BH= √3 a FE △ABHは直角三角形であるから, 2 √3 = の内角は60°である 2sin60° 2 例題 170 A 三平方の定理により h=AH=√AB2-BH?V a a a²- 2 √√6 a /3 3 3 B a H √3 (2) ABCD の面積をSとすると 1 S=asin 60-√3a² 4 よって、正四面体 ABCD の体積Vは 1 √√3 √6 r=/13sh=13 V= a². a= 4 3 12 √2 a であるこ につい また、 (ABCDの面積) BC BCBDsin40 いる( 練習 1辺の ③ 170 にお (1) 17 (3)

回答募集中 回答数: 0
数学 高校生

5/54が答えだとダメな理由が分かりません🙇🏻‍♀️

重要 例題 64 ベイズの定理 00000 袋Aには赤球 10個, 白球 5個, 青球3個袋Bには赤球8個, 白球4個, 青球 16個袋Cには赤球4個 白球3個, 青球5個が入っている。 3つの袋から無作為に1つの袋を選び、その袋から球を1個取り出したところ白 球であった。それが袋から取り出された球である確率を求めよ。 基本63 指針 である。 袋Aを選ぶという事象をA, 白球を取り出すという事象をW とすると, 求める確率 P(WA) は条件付き確率 P(A)= P(W) よって,P(W), P(A∩W) がわかればよい。 まず, 事象 Wを次の3つの排反事象 [1] Aから白球を取り出す。 [2] Bから白球を取り出す。 [3] Cから白球を取り出す に分けて、P(W) を計算することから始める。 また P(AW)-P(A)P (W) 袋A, B, C を選ぶという事象をそれぞれA, B, C とし、複雑な事象 解答 白球を取り出すという事象をWとすると P(W)=P(A∩W)+P(B∩W)+P(COW) =P(A)P (W)+P(B)」(W)+P(C)P(W) p=2.5 /1 4 1 3 + + 3 18 3 18 3 12 5 54 排反な事象に分ける <加法定理 <乗法定理 A B C AnW BOW Cow WS 54 27 2 1 = -34+ 12/7+ 1/2-1/101 4 よって、求める確率は Pw(A)= P(A∩W)_P(A)P (W) 5 1 10 = ÷ P(W) P(W) 54 4 27 ( ベイズの定理 検討 上の例題から,Pw(A)= P(A)P (W) P(A)P^(W)+P(B)P₂(W)+P(C)Pc(W) が成り立つ。 一般に、n個の事象 A1, A2,..., A. が互いに排反であり、そのうちの1つが必ず起こる ものとする。 このとき, 任意の事象Bに対して、 次のことが成り立つ。 P(A)P(B) P(A)= P(A1)P, (B)+P(A2)Pi, (B)+....+P(A)P. (B) (k=1, 2,......,n) これをベイズの定理という。このことは、B=(AB)U(A∩B)U...... U (A0B) で、 AB, A2B,...... ABは互いに排反であることから,上の式の右辺の分母がP(B) と一致し、 Pr (A)= P(BA) P(A∩B) P(B) かつ P(A∩B)=P(A) PA, (B) から導か P(B) れる。

回答募集中 回答数: 0