学年

質問の種類

数学 高校生

【統計的な推測】 確率変数XiとXってなんなんですか? 何が違うんですか? 頭の悪い質問ですみません🙋

第5問 (選択問題) (配点 16) いてもよい。 問~第7問は,いずれか3問を選択し, 解答しなさい。 以下の問題を解答するにあたっては, 必要に応じて 19ページの正規分布表を用 太郎さんと花子さんには,共通で好きなお菓子がある。 そのお菓子は1個ずつ包 装された5個が1つの箱に入って売られている。そのお菓子にはある割合で特別な 味付けのものが混じっている。 特別な味付けのお菓子は無作為に箱に入れられ,1 つの箱に1個もないこともあれば2個以上のときもある。特別な味付けのお菓子の の割合といわれているが, 2人は常々もっと少ない割合ではないかと感 そこで2人は,友達や家族の力も借りて特別な味付けのお菓子の個数の 情報を集め、 検討してみることにした。 1 割合は 2人は調査を始める前に,有意水準と棄却域について自分たちなりの考えをまと 止めておくことにした。 数学Ⅱ・数学B 数学 C 2人は, どの包装についても確率で特別な味付けのお菓子が, 確率 1-で普 通のお菓子が入っているように0 <<1である定数を定められると仮定して p=1/3であることを帰無仮説 = 1/3であることを対立仮説として有意水準5%の 両側検定で判定することにした。 2人は情報を集めた 80 箱分400個のお菓子における特別な味付けのお菓子の個 数が70個であることを確かめた。 どの包装についても確率 1/3で特別な味付けのお 菓子が入っており,確率 で普通のお菓子が入っていると仮定する。 包装1個ご とに1以上400以下の整数を1つずつ割り振り, 数えごとに確率変数X を, 数 えが割り振られた包装1個が特別な味付けのお菓子だったら値 1, 普通のお菓子だ ったら値0をとる確率変数として定める。 さらに X = X1+X2+ ・・・ + X 400 により確 率変数Xを定める。 X, Xの期待値 E (Xi), F(X)について E (X)= コ (i=1, 2, ..., 400) であり E (X)= シス である。 また, Xi, X の分散 V(X), 太郎 : 模擬試験などで使われる偏差値は50+ 計算されるそうだよ。 (個人の得点) (平均点)、 (標準偏差) ×10 で (X)について V(X)= セ ソタ (i=1, 2,.., 400) であり V(X)= チッ で 花子: 正規分布表から標準正規分布における有意水準 5% の両側検定におけ 96 る棄却域は ア イウ 以下または ア イウ 以上だから, 一般の正規分布における有意水準 5% の両側検定における棄却域は, 偏差値で表現すればエオ カ 以下または キク ある。 400 を十分に大きい数とみてXの確率分布は期待値 シス 標準偏差 テ の正規分布で近似できる。 よって実際に特別な味付けのお菓子が400個中 70 個だ ったことから有意水準5%の両側検定により ト 。 以上と 400- なるね。 30 の解答群 69 太郎: 模擬試験について調べるときに受験者から無作為に1人選ぶとして, そ れなりに選ばれそうな範囲だね。 4. 6 ⑩仮定を疑わせる結果となった 花子: 私たちはあまり強い表現は用いないことにして, 数値が棄却域に属する ときは 「仮定を疑わせる結果となった」, 棄却域に属さないときは 「仮 定を疑わせる結果とはならなかった」と述べることにしよう。 ①仮定を疑わせる結果とはならなかった 0405 1.96×10+50 =-19,650 (数学Ⅱ・数学B 数学C第5問は次ページに続く。) 20.95 69,6 -16- (数学Ⅱ・数学B 数学C第5間は次ページに続く。) -17- 400

解決済み 回答数: 1
数学 高校生

2020-5 (2)なのですが、問題文に母比率とあったため、私は2枚目の写真ように解くのかなと思ったのですが、解説を見ると、これは本を借りるか借りないかの二項分布とあったのですが、2枚目の公式を使わない理由を教えていただきたいです🙇‍♀️ どなたかすみませんがよろしくお願い... 続きを読む

第3問~第5問は,いずれか2問を選択し、解答しなさい。 426040 R 20 128720 第5問 (選択問題点 (4+162 以下の問題を解答するにあたっては,必要に応じて35ページの正規分布表を ×10111213 R 用いてもよい。 08 97 ある市の市立図書館の利用状況について調査を行った。720 P6125436 18 162 (4 306 54 360 (1) ある高校の生徒 720人全員を対象に, ある1週間に市立図書館で借りた本の 冊数について調査を行った。 その結果,1冊も借りなかった生徒が612人 1冊借りた生徒が54人, 2冊借りた生徒が 36人であり、3冊借りた生徒が18人であった。4冊以上借 りた生徒はいなかった。 .00 50 COLO OCQ+1と (2)市内の高校生全員を母集団とし、 ある1週間に市立図書館を利用した生徒の 割合(母比率) を とする。この母集団から600 人を無作為に選んだとき、そ 1週間に市立図書館を利用した生徒の数を確率変数Yで表す。 をまと ものである。 240 034 =0.4のとき,Yの平均はE(Y) = キクケ 標準偏差は。 (Y)= コサになる。 ここで,Z=- Y- キクケ240 コサ とおくと、 標本数 600 は十分 0.0 0.0000 0.0040 に大きいので,Zは近似的に標準正規分布に従う。 このことを利用して、Y 240 0.16 1440 240 3805 P 215 以下となる確率を求めると、その確率は0.シスになる。 0.1554 0.1591 0.182 198 0.1915 0.1950 0.108 0.6 また, p = 0.2 のとき, Yの平均はキクケ 1 倍、標準偏差 0.3 02886 この高校の生徒から1人を無作為に選んだとき, その生徒が借りた本の冊数 を表す確率変数をXとする。 0.9 0.3159 0.31 ソ V コの 一倍である。 3 数学Ⅱ・数学B第5問は次ページに 1.1 0.3643 0.3665 1.2 0.2840 0.3869) a xenin 1.3 0.40324049 1.4 0.419204207 このとき,Xの平均(期待値)はE(X) 1.5 0.4332 0.445 022 日本 イ であり、X2の平均は 1.6 0.4452 0.4463 0.4470 ウ E(X2)= I 2 である。 よって, Xの標準偏差は (X) = V オ で カ ある。 22 V(x)=1/2-1(1) 2 2.3 1.7 0.4554 0.44 1.8 0.4641 0.4649 0.4666 1.9 0.4713 0.4719 2.0 0.4772 04778 04733 2.1 0.4821 0.456 0.480104864 0.12930.4 0. 4728 (数学Ⅱ・数学B第5問は次ページに続く。) 2.4 0.4918 0.40 0.423 2 2 16 2.5 0.48 0.4940 0.494 26 0.4969 27 0196 04566 780. 4275 0.497 44

解決済み 回答数: 1