学年

質問の種類

数学 高校生

(2)の場合分けについて質問です。私は問題を解くときに(i)0<a<2(ii)2≦aのように解答と逆に=をつけて場合分けしたのですが間違いですか。≦は確か、<または=、と言う意味だったと思うのですが、、、 よろしくお願いします。🙇

重 定価 とき 146 基本例 85 2次関数の係数決定[最大値 DO |(1) 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように、定数の値 | (2) 関数y=x2-2ax+α2-2a (0≦x≦2) の最小値が11になるような正の定数 を定めよ。 また、このとき最小値を求めよ。 a の値を求めよ。 基本8082 重要 6 指針 関数を基本形y=a(x-b)'+αに直し, グラフをもとに最大値や最小値を求め、 (1)(最大値)=4(2) (最小値) =11 とおいた方程式を解く。 (2) では, 軸x=α (a>0) が区間 0≦x≦2の内か外かで場合分けして考える。 CHART 2次関数の最大・最小 グラフの頂点と端をチェック 区間の中央の値はって あるから,軸x=2は区 間1≦x≦4で中央より 左にある。 解答 (1) y=-2x2+8x+k を変形すると y=-2(x-2)2+k+8 y k+8--- 最大 よって, 1≦x≦4においては, 右の図から, x=2で最大値+8 0 1 2 をとる。 ゆえに k+8=4 最小 よって k=-4 んの方程式を解く。 このとき,x=4で最小値 -4 をとる。 最大値を4とおいて、 (2) y=x2-2ax+ α-2a を変形すると y=(x-a)²-2a [1] 0<a≦2 のとき,x=αで 最小値 2α をとる。 [1] y 軸 11 a 2a=11 とすると α=- 2 0 2 x これは 0<a≦2を満たさない。 [2] 2<αのとき, x=2で の 「αは正」に注意。 0 <a≦2 のとき, 軸 x=αは区間の内。 頂点 x=αで最小。 の確認を忘れずに。 -2a 最小 2<αのとき, 軸x=aは区間の右外。 →区間の右端 x=2で最 最小値 22-2a・2+α2-2a, つまりα-6a+4 をとる。 α-6a+4=11 とすると α²-6a-7=0 [2] YA a2-6a+4! 最小 a これを解くと a=-1,7 02 2 <αを満たすものは a=7 以上から、求めるαの値は α=7 -2a (a+1)(a-7)=0 の確認を忘れずに。 85 んの値を求めよ。 練習 (1) 2次関数y=x²-x+k+1の-1≦x≦1における最大値が6であるとき, 定数

解決済み 回答数: 1
数学 高校生

(2)の場合分けについて質問です。私は問題を解くときに(i)0<a<2(ii)2≦aのように解答と逆に=をつけて場合分けしたのですが間違いですか。≦は確か、<または=、と言う意味だったと思うので間違っていない気がしちゃってます、、、よろしくお願いします。🙇

46 基本例 85 2次関数の係数決定 [最大値・最小値] (1) 0000 (1) 関数y=-2x2+8x+k (1≦x≦4) の最大値が4であるように,定数kの値 を定めよ。また,このとき最小値を求めよ。 (2) 関数 y=x2-2ax+a2a (0≦x≦2) の最小値が11になるような正の定数 α の値を求めよ。 基本 80 82 重要86 指針 関数を基本形y=a(x-p)'+αに直し, グラフをもとに最大値や最小値を求め (1) (最大値) =4 (2) (最小値)=11 とおいた方程式を解く。 (2)では,軸x=a(a>0) が区間 0≦x≦2の内か外かで場合分けして考える。 CHART 2次関数の最大・最小 グラフの頂点と端をチェック 5 ■区間の中央の値は 22 で あるから, 軸x=2は区 間 1≦x≦4で中央より 左にある。 解答 (1) y=-2x2+8x+k を変形すると y=-2(x-2)^+k+8 y k+8-5 よって, 1≦x≦4においては, 右の図から, x=2で最大値k+8 012 をとる。 ゆえに k+8=4 最小 最大値を4とおいて, よって k=-4 kの方程式を解く。 このとき, x=4で最小値-4をとる。 [1] y 軸 (2) y=x2-2ax+α2-2a を変形すると y=(x-a)²-2a [1] 0<a≦2 のとき, x=αで 最小値 -2αをとる。 11 a 2a=11 とすると α=- 2 0 2 これは0<a≦2を満たさない。 [2] 2 <αのとき,x=2で -2a 最小 x AX < 「αは正」に注意。 <0<a≦2のとき, 軸 x=αは区間の内。 →頂点x=αで最小。 の確認を忘れずに。 最小値 22-2α・2+α2-2a, つまりα-6a+4をとる。 α2-6a+4=11とすると a2-6a-7=0 2<αのとき, 軸x=aは区間の右外。 [2] YA a a²-6a+4 →区間の右端 x=2で最 最小 a (a+1) (a-7)=0 これを解くと a=-1,7 02 x 2 <a を満たすものは a=7 の確認を忘れずに。 以上から、 求めるαの値は α=7 -2a 習 (1)2次関数 y=x-x+k+1の-1≦x≦1における最大値が6であるとき、定数 35 kの値を求めよ。 (2) 関数y=-x2+2ax-a-2a-1 (-1≦x≦0) の最大値が0になるような定数 a の値を求めよ。 p.159 EX61

未解決 回答数: 1
数学 高校生

[1]の条件は思いつくのですが、[2]と[3]の条件が自分ではなかなか思いつきません。こういうのは何回もこの問題を解くしかないのでしょうか?

8 重要 例題 関数とその逆関数のグラフの共有点(2) 00000 f(x)=x²-2x+k(x≧1) の逆関数をf'(x) とする。 y=f(x) のグラフと |y=f'(x) のグラフが異なる2点を共有するとき, 定数んの値の範囲を求めよ。 基本10 指針 逆関数f'(x) を求め, 方程式f(x)=f(x) が異なる2つの実数解をもつ条件を考え てもよいが、無理式が出てくるので処理が煩雑になる。ここでは,逆関数の性質を利 用して、次のように考えてみよう。 共有点の座標を (x, y) とすると, y=f(x) かつy=f-1 (x) である。 ここで,性質 y=f'(x)=x=f(y) に着目し,連立方程式 y=f(x), x=f(y) が異なる2つの実数解 (の組) をもつ条件を考える。 x, yの範囲にも注意。 共有点の座標を (x, y) とすると tv= 解答 y=f(x) かつy=f-1(x) 参考 y=x2-2x+kとす ると y=f-1(x) より x=f(y) であるから,次の連立方程式を考 よって える。 y=x2-2x+k(x≧1) ①, x=y2-2y+k(y≧1) ① ② から y-x=(x+y)(x-y)-2(x-y) したがって (x-y)(x+y-1)=0 x1,y≧1であるから x+y-1≧1 ゆえに x=y よって, 求める条件は, x=x²-2x+k すなわち x2-3x+k=0が x≧1 の異なる2つの実数解をもつこと である。 B すなわち, g(x)=x2-3x+kとし, g(x) =0の判別式をD こ とすると、次のことが同時に成り立つ。 [1] D> 0 x2-2x+k-y= 0 x=1±√12-(k-y) x≧1から x=√y-k+1+1 xとyを入れ替えて,逆関 数は f1(x)=√x-k+1 +1 A 逆関数f(x) の値域 は 関数 f(x)の定義域と 一致するから y≧1 B 放物線とx軸がx≧1 の範囲の異なる2点で交わ る条件と同じ。 y y=g(x) [2] y=g(x) の軸がx>1の範囲にある [3]g(1) 20 [1] D=(-3)2-4・1・k=9-4k ={(x)}(1) 9 よって 9-4k>0 ゆえに k< 3 4 3 3 + 0 3 [2] 軸は直線 x = x=1/2で12/28>1である。 [3]g(1)≧0から 12-3.1+k≧0 よって k≧2 4. ③④の共通範囲をとって 9 2≤k<- (S) or N 4

解決済み 回答数: 1
理科 中学生

中学1年生の、力と重力の問題です。 大問6②のbなのですが、どうしてエになるんですか? それと、よろしければこのような問題を解くときの観点を教えていただきたいです。

力の大きさの関係として最も適切なものを、次の 重力の大きさ ア~ウの中から1つ選び, 記号で答えなさい。 ア おもりAにはたらく重力の方が大きい。 0 同じ大きさである。 ウ糸がおもりAを引く力の方が大きい。 ② 図15は,図14のように, おもりAを持ち上げて静止 させたときの模式図である。 図15の矢印は, 手, 糸, おもりAにはたらく力をそれぞれ表したものである。 図15の糸がおもりAを引く力と作用・反作用の関 係にある力を, 図15のア~エの矢印の中から1つ選 び, 記号で答えなさい。 おもり 図15 ア(手が糸を 引く力) 糸 イ(糸が手を 引く力 b 図15の糸がおもりAを引く力とつり合いの関係に ある力を, 図15のア~エの矢印の中から1つ選び、 記号で答えなさい。 糸がおもりAを 引く力 ―ウ(おもりAが 糸を引く力) エ おもりAに はたらく重力 おもりA 図16は、固定した板につけた糸aの一方をおも りBにつなげ、おもりBにつなげた糸bの一方を 斜め上に引いて, おもりBを静止させたときの模 式図である。 図16の矢印() は, 糸 a がおも 図16 一固定した板

解決済み 回答数: 1