学年

質問の種類

国語 中学生

急ぎで教えてください!途中式だけで大丈夫です!

第1章 場合の数と確率 POINT 23 2つのA,Bがともに起こる確率P(AB)は P(ANB)=P(A)P,(B) 例31 乗法定理の利用(1) 当たりくじ3本を含む8本のくじを、A,Bの2人がこの順に1本ず つ引く。ただし、引いたくじはもとにもどさない。このとき, A,B の2人とも当たる確率を求めよ。 Aが当たるという事象をA,Bが当たるという事象をBとす ると、求める確率P(ANB)は、乗法定理により P(A∩B)=P(A)P (B) Aが当たったときに、残りのくじは7本で当たりくじ2本を 含むから、条件付き確率P(B)は P₁(B) = 2/ P(A∩B)=P(A)P(B)= 基本 127 当たりくじ4本を含む9本のくじ ABの2人がこの順に1本ずつ引 く。ただし、引いたくじはもとにもどさ ない。このとき、次の確率を求めよ。 (1) Aが当たり Bがはずれる確率 □ (2) 2人ともはずれる確率 3 1 7-28 3つ以上の事象の場合につい ても、2つの場合の法定理 と同様なことが成り立つ。 例32乗法定理の利用(2) 当たりくじ4本を含む12本のくじを、A,Bの2人 128 赤玉5個と白玉7個の入った袋か ら、玉を1個ずつ3個取り出す。 ただし, 取り出した玉はもとにもどさない。この とき, 取り出した玉がすべて赤玉である 確率を求めよ。 ずつ引く。 ただし, 引いたくじはもとにもどさない。 当たる確率を求めよ。 解答 B が当たるという事象は、次の2つの事象の [1] A が当たり, Bも当たる場合。 4 3 その確率は X 12 11 Mona [2] A がはずれ, Bが当たる場合。 その確率は 8 4 X 12 11 [1], [2] は互いに排反であるから、Bが当たる 4 3 8 4 最x+最x=1 12 11 12 11 3 練習 129 当たりくじ3本を含む7本のくじを, A,Bの2人がこの順に1本ずつ引く。 ただし, 引いたくじはもとにもどさな い。 このとき、次の確率を求めよ。 コ (1) Aが当たる確率 コ (2) B が当たる確率 C

未解決 回答数: 1
数学 高校生

この四角でかこったとこがなぜそうなるのかわかりません、 写真2枚目にあるように、確率の乗法定理により、かけると思いました、 教えてください!

指針 (1) の確率は PA (B) である。 条件付き確率の定義式 ne PA(B) == を利用して求めてもよいが,この問題のように, 個数の状態の変化の過程がわかる! のは, 解答のように考えた方が早い。 1回目に赤玉を取り出すという事象をA,2回目に赤玉を 解答 取り出すという事象をBとする。 (1) 求める確率は PA(B) 1回目に赤玉が出たとき, 2回目は赤玉4個、青玉4個の 計8個の中から玉を取り出すことになるから POA 4_1 200 PA(B)= 8 2 (2) 求める確率はP (B) 1回目に青玉が出たとき, 2回目は赤玉5個、青玉3個の 計8個の中から玉を取り出すことになるから 10. よって ANBの起こる確率 _P(A∩B) A の起こる確率 よって PA(B)=- Pa (B)= 5 8 別解] [条件付き確率の定義式に当てはめて考える] 5P₂ 5.4 5 (1) P(A)= 5, P(ANB)= 9' OP2 9.8 18 PÂ(B)= P(A∩B) P(A) (2) P(A)= 4, P(ÃΜB)=¹P₁X5P₁ P(A∩B) EP(A) 5 18 P2 5 P(A) 全体をAとしたときのA∩Bの割合 ·1· 18 || 5-94-94-9 ÷ 4-5 9.8 5 = 18 5 = 9 1 2 5 18 ( 59 5 18 4 8 (1) 041 〇4個 051 031 O 188 赤玉 考える。 O 1BB 残りを 考え 「取り出した玉を振 と考え、順列を利 取り出し方を数え 例えば、(1)では P(A∩B)に関し Ri, R2, 5個を 青玉4個を Bt, B〟 と区別して 並べ方 P2通りとして 2080 ⑨58 出し, それをもとに戻さないで、続けてもう1枚取り出す。 練習 1から15までの番号が付いたカードが15枚入っている箱から, カードを (1) 1回目に奇数が出たとき, 2回目も奇数が出る確率を求めよ。 (2)1回目に偶数が出たとき, 2回目は奇数が出る確率を求めよ。

未解決 回答数: 1